- H800核心技术突破与行业应用实战
智能计算研究中心
其他
内容概要在人工智能技术持续迭代的背景下,H800芯片凭借自主架构优化与算力跃升,成为推动行业场景化落地的关键驱动力。本文将从技术路径、性能突破与行业应用三个维度,系统解析H800如何在高并发计算与低延时响应领域实现底层架构创新。首先聚焦其自主架构优化的核心技术路径,包括动态资源调度算法与异构计算单元的深度协同设计,揭示其在能效比与计算密度上的突破逻辑;进一步结合算力跃升的具体表现,探讨该芯片如何通
- 算力驱动新质生产力:应用实践与发展路径
智能计算研究中心
其他
内容概要算力作为新质生产力的核心驱动力,正通过技术创新与场景融合重构产业生态。当前算力发展呈现多维突破态势:在基础架构层面,异构计算与模型压缩技术推动硬件资源利用率提升;在应用场景端,工业互联网算力优化生产流程,智能安防算力实现毫秒级风险响应;在系统协同方面,算力调度机制与能效优化策略形成动态平衡网络。随着国家算力网战略推进,芯片架构创新、绿色数据中心建设与算力租赁模式正加速形成产业链闭环,为量子
- 高通平台的 Camera HAL 架构解析:QCamera 与 CHI HAL 实战剖析
高通平台的CameraHAL架构解析:QCamera与CHIHAL实战剖析关键词:QCamera3、CHIHAL、QTICameraStack、HAL3、CamX、ISPPipeline、QCamera调试、Snapdragon成像架构、CameraDriver协同摘要:高通平台是Android移动终端中主流的SoC方案之一,其CameraHAL架构发展历程丰富,从传统QCamera到模块化CHI
- 基于国产手机 SoC 的多模态模型推理加速实战:GPU × NPU 协同优化全流程解析
观熵
智能终端Ai探索与创新实践人工智能androidNPUGPU
基于国产手机SoC的多模态模型推理加速实战:GPU×NPU协同优化全流程解析关键词多模态模型推理、NPU硬件加速、GPU并行计算、国产手机SoC、端侧部署优化、华为昇腾NPU、小米Surge芯片、高通AIEngine、异构计算加速、TFLiteNNAPI、ONNXRuntimeEP摘要随着国产智能手机SoC(如华为昇腾、vivoV系列、小米Surge、紫光展锐、联发科Dimensity)的异构计算
- 大模型部署的整体架构
flyair_China
人工智能云计算架构
一、大模型部署架构1.1部署架构大模型部署的整体架构是一个多层次、软硬件协同的系统工程,旨在解决模型规模庞大、计算资源密集、延迟敏感等挑战。1.1.1、基础架构层:硬件资源与网络算力集群GPU/NPU阵列:如NVIDIAA100/H100/H200/H800、华为昇腾、昆仑芯等,支持FP16/INT8量化计算,显存带宽需达TB级(如HBM3e显存带宽达3.35TB/s)。异构计算:CPU+GPU/
- QCS8550 硬件性能全解析:参数、性能、优化,一篇讲透
伊利丹~怒风
Qualcomm算法python人工智能边缘计算无人机机器人
在物联网(IoT)设备向高性能、智能化演进的过程中,处理器作为核心算力单元扮演着关键角色。高通推出的Dragonwing™QCS8550处理器,凭借4nm工艺、异构计算架构、极致边缘AI处理能力及Wi-Fi7连接等特性,成为面向工业无人机、自主移动机器人、边缘AI盒子等高性能IoT场景的旗舰解决方案。本文将从核心参数、性能优势、优化亮点三个维度,全面解析这款处理器的技术实力。一、核心参数:4nm工
- Android 异构计算与 OpenCL/CUDA/OpenVX 的协同方式实战解析
观熵
国产NPU×Android推理优化android人工智能
Android异构计算与OpenCL/CUDA/OpenVX的协同方式实战解析关键词Android异构计算、OpenCL、CUDA、OpenVX、GPU加速、NPU调度、HSA架构、神经网络推理、计算图编排、SoC协同处理、AI芯片编程摘要随着国产SoC平台持续迭代,Android系统中异构计算模式已从传统CPU+GPU并行计算,扩展到集成NPU、DSP、ISP等多核单元的复杂协同体系。在AI推理
- FPGA芯片厂商及关键的开发测试工具
Chip Design
xPUChipDesignfpga开发
以下是结合2025年技术动态整理的。一、FPGA芯片主要厂商及产品系列厂商芯片系列典型特点目标市场AMD/XilinxVersal,Kintex,Artix,Zynq高性能异构计算(AI引擎+FPGA+CPU)数据中心、5G、航空航天Intel(Altera)Stratix,Arria,Agilex,Cyclone高带宽内存集成(HBM),支持CXL协议网络加速、边缘计算LatticeCertus
- Qualcomm Hexagon DSP 与 AI Engine 架构深度分析:从微架构原理到 Android 部署实战
观熵
国产NPU×Android推理优化人工智能架构android
QualcommHexagonDSP与AIEngine架构深度分析:从微架构原理到Android部署实战关键词QualcommHexagon、AIEngine、HTA、HVX、HMX、Snapdragon、DSP推理加速、AIC、QNNSDK、Tensor编排、AndroidNNAPI、异构调度摘要HexagonDSP架构是QualcommSnapdragonSoC平台中长期演进的异构计算核心之一
- 深度学习篇---昇腾NPU&CANN 工具包
Atticus-Orion
上位机知识篇图像处理篇深度学习篇深度学习人工智能NPU昇腾CANN
介绍昇腾NPU是华为推出的神经网络处理器,具有强大的AI计算能力,而CANN工具包则是面向AI场景的异构计算架构,用于发挥昇腾NPU的性能优势。以下是详细介绍:昇腾NPU架构设计:采用达芬奇架构,是一个片上系统,主要由特制的计算单元、大容量的存储单元和相应的控制单元组成。集成了多个CPU核心,包括控制CPU和AICPU,前者用于控制处理器整体运行,后者承担非矩阵类复杂计算。此外,还拥有AICore
- 异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析
观熵
大模型高阶优化技术专题算法人工智能
异构推理系统动态负载调度与资源分配实战:多节点协同、任务绑定与智能分发策略全解析关键词异构调度、Kubernetes调度器、GPU任务绑定、MIG分配、推理流量调度、服务亲和性、任务隔离、资源优先级、边缘协同、动态算力管理摘要在AI推理系统的生产级部署中,单一自动扩缩容机制已无法满足实际复杂环境中对资源利用率、任务延迟与系统稳定性的多重要求。特别是在GPU/NPU/CPU并存的异构计算集群中,运行
- 量子计算+AI芯片:光子计算如何重构神经网络硬件生态
前言前些天发现了一个巨牛的人工智能免费学习网站,通俗易懂,风趣幽默,忍不住分享一下给大家。点击跳转到网站量子计算+AI芯片:光子计算如何重构神经网络硬件生态——2025年超异构计算架构下的万亿参数模型训练革命产业拐点:英伟达BlackwellUltra发布光互连版GPU,IBM量子处理器突破512比特,光子计算商用成本降至$5/TOPS实测突破:Llama3-405B在光子-量子混合集群训练能耗下
- Apple SoC 图像 ISP 与 Neural Engine 联合优化案例分析:性能与质量平衡的实战经验
观熵
影像技术全景图谱:架构调优与实战接口隔离原则影像Camera
AppleSoC图像ISP与NeuralEngine联合优化案例分析:性能与质量平衡的实战经验关键词:AppleSoC、ISP优化、NeuralEngine协同、图像处理性能、DeepFusion、SmartHDR、实时推理、多核异构计算、功耗管理摘要:随着图像计算复杂度的不断提升,AppleSoC中的ISP与NeuralEngine(NE)联合优化成为提升拍照性能和图像质量的关键路径。本文结合最
- AI人工智能领域必备:AI芯片的关键作用
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构AI人工智能与大数据技术人工智能ai
AI人工智能领域必备:AI芯片的关键作用关键词:AI芯片、算力、神经网络、能效比、专用架构、异构计算、存算一体摘要:在人工智能高速发展的今天,从手机里的“语音助手”到马路上的“自动驾驶汽车”,从医院的“智能影像诊断”到工厂的“机器人流水线”,AI技术的落地离不开一个“幕后大功臣”——AI芯片。本文将用“快递分拣工厂”“人脑神经村”等生活案例,带你一步一步理解AI芯片的核心作用、工作原理和未来趋势,
- 异构计算解决方案(兼容不同硬件架构)
ARM2NCWU
硬件架构
异构计算解决方案通过整合不同类型处理器(如CPU、GPU、NPU、FPGA等),实现硬件资源的高效协同与兼容,满足多样化计算需求。其核心技术与实践方案如下:一、硬件架构设计异构处理器组合主从协作模式:采用通用CPU(如ARMCortex-M3)作为主处理器,搭配专用协处理器(如MSP430微控制器)处理特定任务(如射频通信),通过串口/USB/以太网实现通信。众核架构:集成CPU、GPU、N
- 深度学习学习指南
努力的Lorre
深度学习人工智能
本帖子将以本书的逻辑和顺序做一个梳理:CS基础->AI算法->模型压缩->异构计算->AI框架->AI编译器《DeepLearningSystems》(https://deeplearningsystems.ai/)CS基础推荐书单所需的编程语言(C/C++、Python)就不多讲了,数据结构算法也是大学基础课程,不多赘述。对于操作系统需要多了解,推荐多看一看《深入理解计算机系统》(传说中的面试圣
- 高通 Camera 架构全景图:Sensor–ISP–DPU–GPU 数据流向解析
观熵
影像技术全景图谱:架构调优与实战架构接口隔离原则影像Camera
高通Camera架构全景图:Sensor–ISP–DPU–GPU数据流向解析关键词高通Snapdragon、Camera架构、ISP模块、DPU、GPU、数据路径、硬件加速、图像处理流程摘要本文将深入解析高通Snapdragon平台下Camera系统的全链路数据流向,从Sensor输入到ISP图像信号处理、再到DPU显示输出与GPU并行处理的完整通路。通过结合MSM系列SoC的实际驱动架构与硬件模
- 复旦微ZYNQ SOC AXI_DMA高速数据传输实战指南
芯作者
D1:ZYNQ设计fpga开发
突破传统瓶颈:零拷贝+双缓冲实现2.4GB/s传输速率AXI_DMA在异构计算中的核心价值在复旦微ZYNQSOC系统中,AXI_DMA是连接PS(处理系统)和PL(可编程逻辑)的高速数据通道。本文通过创新性的零拷贝双缓冲架构,实现2.4GB/s的稳定传输速率,相比传统方案提升300%!我们将从硬件设计到软件优化,揭秘工业级DMA应用的完整开发流程。一、系统架构创新设计1.1传统DMA方案瓶颈分析方
- 深入实战:ZYNQ中AXI BRAM打通PS与PL数据交互的高速通道
芯作者
D1:ZYNQ设计fpga开发智能硬件硬件工程
在ZYNQ异构计算平台上,高效的数据交互是发挥PS(处理器系统)与PL(可编程逻辑)协同计算优势的关键。本文将深入探讨利用AXIBRAM控制器实现PS与PL间共享内存通信的方案,提供详实的代码、创新优化思路及性能分析,助你构建高速数据通道。一、为何选择AXIBRAM?在ZYNQ中,PS与PL交互的常用方式包括:AXIDMA:适合大数据流传输AXIGPIO:仅适合小数据量控制AXIBRAM:低延迟、
- 算力新纪元前夜:AI 算力架构迎来迭代升级,三大技术突破开启产业新局
Finehoo
人工智能架构
当AI算力需求以年均300%的增速冲击基础设施极限时,全球科技界正屏息以待英伟达2025年GTC大会的到来。这场将于3月17日启幕的技术盛会,或将成为AI算力架构从"量变"到"质变"的转折点。结合行业动态与技术演进趋势,三大突破性方向正浮出水面,预示着产业格局的深度重构。一、异构计算架构的范式突破随着大模型参数突破万亿级,传统冯・诺依曼架构的"内存墙"问题愈发凸显。英伟达BlackwellUltr
- RISC-V向量扩展与GPU协处理:开源加速器设计新范式——对比NVDLA与香山架构的指令集融合方案
点击“AladdinEdu,同学们用得起的【H卡】算力平台”,H卡级别算力,按量计费,灵活弹性,顶级配置,学生专属优惠当开源指令集遇上异构计算,RISC-V向量扩展(RVV)正重塑加速器设计范式。本文深入对比两大开源架构——NVIDIANVDLA与中科院香山处理器在指令集融合上的创新路径。01开源加速器生态的范式转移RISC-V向量扩展的核心突破RVV1.0标准带来三大革命性特性:1.**可伸缩向
- 算力协同创新与能效优化重构工业场景技术生态
智能计算研究中心
其他
内容概要工业智能化转型正推动算力技术生态的体系化重构,其核心在于通过异构计算与边缘计算的协同创新,构建适应复杂工业场景的动态算力基础设施。当前工业互联网平台中,约67%的实时决策场景依赖边缘节点完成数据处理,而深度学习模型训练等计算密集型任务则需依托云端异构计算集群实现资源优化配置。这种分层计算架构不仅降低网络传输延迟,更使工业设备预测性维护系统的响应速度提升至毫秒级。工业质检领域的技术突破印证了
- 鸿蒙开发实战之Function Flow Runtime Kit优化美颜相机AI流水线
harmonyos-next
一、架构设计突破针对美颜相机复杂的AI处理流程,FunctionFlowRuntimeKit实现三大创新:异构计算流水线CPU+GPU+NPU三端任务自动分配人脸识别→皮肤检测→背景分割→滤镜渲染四阶段并行智能调度策略二、核心代码实现importfunctionFlowfrom'@ohos.functionFlowKit';//定义处理节点constnodes=[{id:'face_detect'
- 海思昇腾/达芬奇架构在 Android 系统中的异构部署:NPU × CPU × GPU 联合调度与模型落地实践全流程解析
观熵
国产NPU×Android推理优化架构android
海思昇腾/达芬奇架构在Android系统中的异构部署:NPU×CPU×GPU联合调度与模型落地实践全流程解析关键词海思昇腾、达芬奇架构、AndroidNPU部署、NNIE、ACL、异构计算、张量融合、CANN、NNAPI、边缘AI、算子编译器摘要随着海思昇腾与达芬奇架构在智能终端中的广泛应用,其在Android系统下的AI能力调度、模型部署与异构算力融合需求日益迫切。昇腾SoC集成的NPU(达芬奇
- 开放创新,昇腾 CANN 再向深处
华为人工智能
AI领域有自己的速度。4月29日凌晨4点,Qwen3正式发布,并开源全部8款混合推理模型。发布仅2小时,Qwen3模型在GitHub上的Star数已近17k。更有趣的是,开源5小时后,华为计算发文宣布实现Qwen3的0Day适配,即在MindSpeed和MindIE中开箱即用。这意味着,开发者可以第一时间零门槛使用最新的AI能力。这样软硬件闪电协同的背后,华为昇腾异构计算架构CANN的深度开放策略
- 硬件异构环境(如 CPU+GPU 混合)下的任务调度策略,如何最大化资源利用率?
百态老人
算法机器学习人工智能
硬件异构环境(CPU+GPU混合)下的任务调度策略体系与资源利用率优化技术(2025版)一、异构计算环境的核心挑战在CPU+GPU混合架构中,最大化资源利用率的本质是解决三类矛盾:硬件能力差异矛盾:CPU通用性强但并行度低,GPU并行度高但逻辑处理能力弱资源动态性矛盾:任务负载波动与硬件资源状态的实时匹配同步效率矛盾:CPU-GPU间数据通信与任务协同的延迟损耗二、任务调度策略框架设计1.硬件特性
- 算力安全标准与异构芯片架构演进方向
智能计算研究中心
其他
内容概要随着人工智能、量子计算等前沿技术对算力需求的指数级增长,构建安全可控的算力基础设施已成为全球科技竞争的核心议题。当前算力体系正面临双重挑战:一方面,异构计算架构的快速演进推动了光子计算、神经形态计算等新型计算范式的突破;另一方面,工业互联网、医疗影像等高精度场景对算力可靠性提出了严苛要求。在此背景下,算力安全标准与芯片架构创新正形成双向驱动的技术生态。行业专家指出:"未来三年将是算力安全标
- 【异构计算架构】CPU/GPU/FPGA混合资源池
沐风—云端行者
云计算架构架构fpga开发云计算云原生
异构计算架构:CPU/GPU/FPGA混合资源池一、技术背景及发展二、技术特点三、技术实现细节四、未来发展趋势结语一、技术背景及发展随着摩尔定律逼近物理极限,单一架构的计算芯片已无法满足AI训练、科学计算、实时渲染等高并发、高吞吐场景的需求。异构计算通过整合多种指令集和体系结构的处理器(如CPU、GPU、FPGA),实现了“专业分工+协同增效”的计算范式。发展历程:早期阶段(2000年前):GPU
- FPGA × GPU 混合推理系统架构实战:协同执行链设计与性能对比分析
观熵
大模型高阶优化技术专题fpga开发系统架构人工智能
《FPGA×GPU混合推理系统架构实战:协同执行链设计与性能对比分析》关键词FPGA加速、GPU推理、混合部署架构、DPU调度、异构计算、协同执行链、推理任务分配、性能对比分析摘要在实际工程中,单一加速器已难以满足复杂AI场景下对低延迟与高吞吐的双重要求。本文基于真实部署实践,系统分析了FPGA与GPU混合推理系统的协同架构设计,深入解析DPU与CUDA引擎在异构平台中的任务调度路径、特征数据交换
- 零基础学习GPU 系统软件资源(7.4)--未来趋势与前沿技术:新型架构的软件适配
xiaoheshang_123
学习架构simulink
目录第七章:未来趋势与前沿技术新型架构的软件适配1.CXL协议对GPU缓存一致性的影响(1)CXL协议的核心特性(2)GPU缓存一致性的挑战与解决方案(3)性能影响与适用场景2.DPU加速下的GPU资源卸载场景(1)DPU的核心功能(2)GPU资源卸载的技术实现(3)性能优势与典型应用3.技术挑战与未来方向(1)当前挑战(2)未来趋势4.总结第七章:未来趋势与前沿技术新型架构的软件适配随着异构计算
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟