- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- LiteCoT:难度感知的推理链压缩与高效蒸馏框架
大千AI助手
人工智能#Prompt#OTHER深度学习人工智能机器学习自然语言处理提示词LiteCoT思维链
“以智能裁剪对抗冗余,让推理效率与精度兼得”LiteCoT是由香港科技大学(广州)联合独立研究者团队提出的创新方法,旨在解决大模型知识蒸馏中推理链过度冗长和缺乏难度适应性的核心问题。该方法通过难度感知提示(DAP)动态生成精简的推理链,显著提升小模型推理效率与准确性。相关论文发表于arXiv预印本平台(2025年),为当前大模型轻量化部署的前沿方案。本文由「大千AI助手」原创发布,专注用真话讲AI
- 极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐
极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐标题极限挑战:用知识蒸馏压缩模型,实时推荐系统在50ms内完成推荐TagAI,知识蒸馏,实时推荐,模型压缩,技术挑战,高性能描述面对实时推荐系统必须在50ms内完成推荐这一极限条件,AI研发工程师团队在数据量从GB级飙升至PB级的巨大冲击下,展现出极高的技术实力和创新能力。团队通过引入先进的模型压缩和优化技术,成功在性能和精度之间找到了
- 知识蒸馏:模型压缩与知识迁移的核心引擎
大千AI助手
人工智能Python#OTHERtransformer人工智能神经网络深度学习知识蒸馏KD蒸馏
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!从软目标迁移到无数据合成的轻量化革命一、核心定义与技术价值知识蒸馏(KnowledgeDistillation,KD)是一种通过迁移大型教师模型(Teacher)的知识至小型学生模型(Student)的模型压缩技术。其核心思想是:学生模型不仅学习原始数
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- 【论文阅读】Decoupled Knowledge Distillation
Bosenya12
论文阅读
摘要:最先进的蒸馏方法主要基于从中间层蒸馏出深层特征,而logit蒸馏的重要性则被大大忽视了。为了提供研究logit蒸馏的新观点,我们将经典的KD损失重新表述为两部分,即目标类知识蒸馏(TCKD)和非目标类知识蒸馏(NCKD)。我们实证调查并证明了两部分的效果:TCKD传递了有关训练样本“困难”的知识,而NCKD是logit蒸馏起作用的突出原因。更重要的是,我们揭示了经典的KD损失是一个耦合公式,
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- 【图像超分】论文精读:MTKD: Multi-Teacher Knowledge Distillation for Image Super-Resolution
十小大
超分辨率重建(理论+实战科研+应用)深度学习人工智能图像处理计算机视觉超分辨率重建论文阅读论文笔记
请先看【专栏介绍文章】:【超分辨率(Super-Resolution)】关于【超分辨率重建】专栏的相关说明,包含专栏简介、专栏亮点、适配人群、相关说明、阅读顺序、超分理解、实现流程、研究方向、论文代码数据集汇总等)前言论文题目:MTKD:Multi-TeacherKnowledgeDistillationforImageSuper-Resolution——MTKD:图像超分辨率的多教师知识蒸馏论文
- 嵌入式AI模型压缩技术:让大模型变小
AI智能探索者
AIAgent智能体开发实战人工智能ai
嵌入式AI模型压缩技术:让大模型变小关键词:嵌入式AI、模型压缩、剪枝、量化、知识蒸馏、轻量化网络、端侧部署摘要:当我们用手机拍照时,AI能瞬间识别出“这是一只猫”;智能摄像头能在0.1秒内检测到“有人闯入”。这些“快如闪电”的AI功能背后,藏着一项关键技术——嵌入式AI模型压缩。本文将用“给盆栽修剪枝叶”“用简笔画代替油画”等生活类比,带您一步步理解模型压缩的核心技术(剪枝、量化、知识蒸馏、轻量
- 大模型·知识蒸馏·学习笔记
小先生00101
笔记人工智能神经网络机器学习自然语言处理深度学习语言模型
第一部分:核心概念入门1.1什么是知识蒸馏?核心问题:深度学习模型(如大型神经网络)虽然性能强大,但其巨大的参数量和计算需求使其难以部署到手机、嵌入式设备等资源受限的平台。核心思想:知识蒸馏是一种模型压缩和优化的技术,其灵感来源于“教师-学生”范式。我们先训练一个复杂但性能强大的“教师模型”,然后利用这个教师模型来指导一个轻量级的“学生模型”进行学习。生动的比喻(Hinton,2015):这个过程
- 教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践
观熵
人工智能DeepSeek私有化部署
教师-学生协同知识蒸馏机制在私有化系统中的融合路径:架构集成、训练范式与部署实践关键词:私有化部署、知识蒸馏、教师模型、学生模型、协同蒸馏、蒸馏训练、边缘部署、模型压缩、国产大模型、自监督微调摘要:随着国产大模型在企业私有化环境中的广泛部署,模型的压缩与推理性能优化成为核心挑战之一。本文聚焦“教师-学生协同知识蒸馏机制”在私有化系统中的实际融合路径,系统分析从教师模型选择、蒸馏数据构建、协同训练框
- 大模型驱动核工业智能化的技术架构与核心突破
Deepoch
人工智能创业创新语言模型
从数据闭环到自主决策,解码核能系统的AI技术演进路径Deepoc大模型通过构建多维度技术体系,在知识结构化处理、逻辑推理优化及多模态验证机制等方向取得关键技术突破,有效提升生成内容与行业知识库的匹配度。经第三方测试验证,在装备制造、能源管理等场景中,其生成内容的可验证性指标较基线模型提升62%,关键参数失真率控制在0.3%阈值内。通过构建行业知识蒸馏框架,该模型已形成覆盖12个垂直领域的定制化解决
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- 【深度学习解惑】结合神经网络结构剪枝或知识蒸馏,能否把 Inception 精剪到 mobile‑friendly 仍保持精度?
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习神经网络剪枝人工智能Inception机器学习googlenet
Inception系列模型移动端压缩研究报告摘要Inception系列卷积神经网络(如GoogLeNet/Inceptionv1、v3等)通过模型剪枝和知识蒸馏等压缩技术可以显著减小模型规模,使其更适合移动端部署,同时保持较高的推理准确率。研究表明,大型Inception模型经过结构化剪枝可在参数量减少约10倍的情况下仅造成很小的精度下降;例如,Inception-v3模型即使剪除87.5%的权重
- 什么是知识蒸馏?如何做模型蒸馏?结合案例说明
一、什么是蒸馏?核心概念:在机器学习中,“蒸馏”指的是知识蒸馏。这是一种模型压缩技术,其核心思想是将一个大型、复杂、性能优越但计算成本高的模型(称为“教师模型”)所蕴含的“知识”或“智慧”,转移给一个小型、简单、计算效率高的模型(称为“学生模型”)。类比:就像化学中的蒸馏过程,通过加热和冷凝分离混合物中的组分,知识蒸馏试图从复杂教师模型的“知识混合物”中,提取出最精华、最核心的模式和关系,并将其“
- AI持续学习模型压缩与加速方法大全
AI智能探索者
人工智能学习ai
AI持续学习模型压缩与加速方法大全关键词:模型压缩、模型加速、持续学习、知识蒸馏、模型剪枝、量化、轻量化架构摘要:本文全面解析AI持续学习场景下的模型压缩与加速技术。从核心概念到具体方法,结合生活案例、代码示例与实战场景,系统讲解剪枝、量化、知识蒸馏等主流技术的原理与应用,帮助读者理解如何在持续学习中平衡模型性能与资源消耗,最终实现高效、可扩展的AI系统。背景介绍目的和范围随着AI技术普及,模型规
- DeepSeek赋能数据治理解决方案
公众号:优享智库
DEEPSEEKAI人工智能流程管理战略管理人力资源财务管理数字化转型数据治理主数据数据仓库人工智能大数据系统架构架构
方案通过DeepSeek的核心技术能力,旨在解决企业数据治理中的痛点问题,提升数据质量、优化数据管理流程,并支持企业的数字化转型和信创化发展。DeepSeek技术架构解析混合专家模型(MoE)创新:动态专家路由:通过门控网络实现专家动态选择,提升推理效率。分层专家专业化:底层专家专注语法/词法处理,中层专家处理语义理解,高层专家负责逻辑推理。跨专家知识蒸馏:通过教师-学生框架将不同领域专家的知识迁
- YOLOv5改进系列(二十五) 知识蒸馏理论与实践
小酒馆燃着灯
YOLO深度学习人工智能
文章目录知识蒸馏基础原理精讲1.什么是知识蒸馏?2.轻量化网络的方式有哪些?3.为什么要进行知识蒸馏?3.1提升模型精度3.2降低模型时延,压缩网络参数3.3标签之间的域迁移4.知识蒸馏的理论依据?5.知识蒸馏分类5.1目标蒸馏-Logits方法5.2特征蒸馏方法6.知识蒸馏的过程6.1升温(T)操作6.2温度(T)特点7.蒸馏损失计算过程8.知识蒸馏在NLP/CV中的应用8.1目标蒸馏-Logi
- 大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战
layneyao
aillama人工智能
大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录大模型「瘦身」指南:从LLaMA到MobileBERT的轻量化部署实战摘要引言一、轻量化技术路径对比1.参数剪枝:移除冗余连接2.知识蒸馏:教师-学生模型迁移3.量化压缩:精度与性能的平衡4.结构优化:轻量级架构设计二、框架与硬件协
- 知识蒸馏在小样本学习中的作用
AI天才研究院
ChatGPTAI大模型企业级应用开发实战大厂Offer收割机面试题简历程序员读书硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLMJavaPython架构设计Agent程序员实现财富自由
知识蒸馏在小样本学习中的作用关键词:知识蒸馏,小样本学习,深度神经网络,软标签,迁移学习,注意力机制摘要:本文将详细探讨知识蒸馏技术在小样本学习中的重要作用。首先,我们将介绍知识蒸馏的基本原理和在小样本学习中的应用,然后分析深度神经网络的基础知识以及知识蒸馏算法原理。接下来,我们将探讨小样本学习算法与模型,并通过实验和评估来验证知识蒸馏在小样本学习中的效果。最后,我们将讨论知识蒸馏的优化策略和面临
- 模型蒸馏(Knowledge Distillation)
PWRJOY
编程通识模型蒸馏深度学习
知识蒸馏(KnowledgeDistillation,简称KD)是一种深度学习中的模型压缩技术,其核心思想是将大型、复杂模型(教师模型)所学到的知识迁移到较小、结构简单的模型(学生模型)中,从而在保持性能的同时,降低计算和存储成本。核心概念在传统的深度学习训练中,模型的目标是通过交叉熵损失(Cross-EntropyLoss)来学习真实标签(HardLabels)。然而,知识蒸馏引入了一种新的学习
- uDistil-Whisper:低数据场景下基于无标签数据过滤的知识蒸馏方法
tongxianchao
人工智能机器学习深度学习
uDistil-Whisper:Label-FreeDataFilteringforKnowledgeDistillationinLow-DataRegimes会议:2025年NAACL机构:卡内基梅降大学Abstract近期研究通过伪标签(pseudo-labels)将Whisper的知识蒸馏到小模型中,在模型体积减小50%的同时展现出优异性能,最终得到高效、轻量的专用模型。然而,基于伪标签的蒸
- 【AI大模型实战项目】llm-action:让天下没有难学的大模型
小城哇哇
人工智能AI大模型语言模型agiaillm模型微调
项目大体如下所示:目录LLM训练LLM训练实战LLM参数高效微调技术原理综述LLM参数高效微调技术实战LLM分布式训练并行技术分布式AI框架分布式训练网络通信LLM推理LLM推理框架✈️LLM推理优化技术♻️LLM压缩LLM量化LLM剪枝LLM知识蒸馏♑️低秩分解♍️LLM算法架构LLM应用开发️LLM国产化适配AI编译器AI基础设施LLMOpsLLM生态相关技术服务器基础环境安装及常用工具LLM
- 工程师视角下的 AI 知识蒸馏 - 小模型变强的秘密全解析 (AI Knowledge Distillation from an Engineer‘s Perspective)
新加坡内哥谈技术
人工智能
每周跟踪AI热点新闻动向和震撼发展想要探索生成式人工智能的前沿进展吗?订阅我们的简报,深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同,从行业内部的深度分析和实用指南中受益。不要错过这个机会,成为AI领域的领跑者。点击订阅,与未来同行!订阅:https://rengongzhineng.io/点击收看【工程师视角下的AI知识蒸馏-小模型变强的秘密全解析】https://www.b
- 智能推荐系统性能优化:模型压缩与加速
AIGC应用创新大全
CSDNai
智能推荐系统性能优化:模型压缩与加速关键词:智能推荐系统、模型压缩、模型加速、知识蒸馏、模型量化、参数剪枝、低秩分解摘要:智能推荐系统已成为互联网产品的"流量引擎",但随着推荐模型从FM、DeepFM进化到Transformer、多模态大模型,参数量从百万级飙升至百亿级,计算复杂度呈指数级增长。本文将用"拆快递"式的通俗语言,结合生活案例与代码实战,带你拆解模型压缩与加速的核心技术(知识蒸馏/剪枝
- JAVA也能做大模型蒸馏了?——浅析JBoltAI在大模型的应用
细胞派
java人工智能LLM大模型蒸馏
一、首先,什么是知识蒸馏?——蒸馏的技术本质知识蒸馏(KnowledgeDistillation)作为模型压缩领域的核心技术,其本质是通过构建教师-学生模型的知识迁移框架,将大模型(教师模型)的泛化能力"蒸馏"到小模型(学生模型)中。这一过程突破了传统剪枝、量化的技术局限,在保证模型性能的前提下可实现高达90%的模型体积压缩。关键技术突破体现在三个维度:1.隐层特征对齐:通过KL散度损失函数实现中
- DeepSeek量化训练核心技术:从原理到工业级部署的完整实践方案
燃灯工作室
Deepseek人工智能机器学习数据挖掘
1.主题背景1.1Why:模型压缩刚需传统AI模型在移动端部署面临内存占用大(ResNet-152约230MB)、推理延迟高(VGG16CPU推理>200ms)等问题。DeepSeek量化方案可实现:模型体积压缩4-8倍(FP32→INT8)推理速度提升2-5倍(利用硬件加速指令)保持95%+原始模型精度1.2行业定位在AI技术栈中属于模型优化层,介于算法研发与实际部署之间。与知识蒸馏、剪枝等技术
- PyTorch深度学习框架60天进阶学习计划 - 第47天:模型压缩蒸馏技术(一)
凡人的AI工具箱
深度学习pytorch学习人工智能生成对抗网络python
PyTorch深度学习框架60天进阶学习计划-第47天:模型压缩蒸馏技术(一)第一部分:知识蒸馏的温度调节机制详解欢迎来到我们学习计划的第47天!今天我们将深入探讨模型压缩技术中的两个重要方法:知识蒸馏和模型剪枝。在第一部分,我们将聚焦于知识蒸馏的温度调节机制。1.知识蒸馏概述知识蒸馏(KnowledgeDistillation)是GeoffreyHinton在2015年提出的一种模型压缩方法,核
- 第05篇:对抗蒸馏(Adversarial Knowledge Distillation)——让学生“骗过”判别器的秘密
厚衣服_3
「知识蒸馏全解:从原理到实战」人工智能
目录对抗蒸馏简介背后的动机与挑战方法原理详解模型结构设计PyTorch实现(含判别器与训练循环)训练策略与技巧实验效果与分析进阶变体与未来趋势总结对抗蒸馏简介:将GAN思维引入KD知识蒸馏(KnowledgeDistillation,KD)中,学生模型模仿教师模型的输出,学习其“行为”或“特征”。传统KD偏重于逐点对齐,比如SoftTargetKD通过KL散度对齐softlogits,而Featu
- 矩阵求逆(JAVA)利用伴随矩阵
qiuwanchi
利用伴随矩阵求逆矩阵
package gaodai.matrix;
import gaodai.determinant.DeterminantCalculation;
import java.util.ArrayList;
import java.util.List;
import java.util.Scanner;
/**
* 矩阵求逆(利用伴随矩阵)
* @author 邱万迟
- 单例(Singleton)模式
aoyouzi
单例模式Singleton
3.1 概述 如果要保证系统里一个类最多只能存在一个实例时,我们就需要单例模式。这种情况在我们应用中经常碰到,例如缓存池,数据库连接池,线程池,一些应用服务实例等。在多线程环境中,为了保证实例的唯一性其实并不简单,这章将和读者一起探讨如何实现单例模式。 3.2
- [开源与自主研发]就算可以轻易获得外部技术支持,自己也必须研发
comsci
开源
现在国内有大量的信息技术产品,都是通过盗版,免费下载,开源,附送等方式从国外的开发者那里获得的。。。。。。
虽然这种情况带来了国内信息产业的短暂繁荣,也促进了电子商务和互联网产业的快速发展,但是实际上,我们应该清醒的看到,这些产业的核心力量是被国外的
- 页面有两个frame,怎样点击一个的链接改变另一个的内容
Array_06
UIXHTML
<a src="地址" targets="这里写你要操作的Frame的名字" />搜索
然后你点击连接以后你的新页面就会显示在你设置的Frame名字的框那里
targerts="",就是你要填写目标的显示页面位置
=====================
例如:
<frame src=&
- Struts2实现单个/多个文件上传和下载
oloz
文件上传struts
struts2单文件上传:
步骤01:jsp页面
<!--在进行文件上传时,表单提交方式一定要是post的方式,因为文件上传时二进制文件可能会很大,还有就是enctype属性,这个属性一定要写成multipart/form-data,不然就会以二进制文本上传到服务器端-->
<form action="fileUplo
- 推荐10个在线logo设计网站
362217990
logo
在线设计Logo网站。
1、http://flickr.nosv.org(这个太简单)
2、http://www.logomaker.com/?source=1.5770.1
3、http://www.simwebsol.com/ImageTool
4、http://www.logogenerator.com/logo.php?nal=1&tpl_catlist[]=2
5、ht
- jsp上传文件
香水浓
jspfileupload
1. jsp上传
Notice:
1. form表单 method 属性必须设置为 POST 方法 ,不能使用 GET 方法
2. form表单 enctype 属性需要设置为 multipart/form-data
3. form表单 action 属性需要设置为提交到后台处理文件上传的jsp文件地址或者servlet地址。例如 uploadFile.jsp 程序文件用来处理上传的文
- 我的架构经验系列文章 - 前端架构
agevs
JavaScriptWeb框架UIjQuer
框架层面:近几年前端发展很快,前端之所以叫前端因为前端是已经可以独立成为一种职业了,js也不再是十年前的玩具了,以前富客户端RIA的应用可能会用flash/flex或是silverlight,现在可以使用js来完成大部分的功能,因此js作为一门前端的支撑语言也不仅仅是进行的简单的编码,越来越多框架性的东西出现了。越来越多的开发模式转变为后端只是吐json的数据源,而前端做所有UI的事情。MVCMV
- android ksoap2 中把XML(DataSet) 当做参数传递
aijuans
android
我的android app中需要发送webservice ,于是我使用了 ksop2 进行发送,在测试过程中不是很顺利,不能正常工作.我的web service 请求格式如下
[html]
view plain
copy
<Envelope xmlns="http://schemas.
- 使用Spring进行统一日志管理 + 统一异常管理
baalwolf
spring
统一日志和异常管理配置好后,SSH项目中,代码以往散落的log.info() 和 try..catch..finally 再也不见踪影!
统一日志异常实现类:
[java]
view plain
copy
package com.pilelot.web.util;
impor
- Android SDK 国内镜像
BigBird2012
android sdk
一、镜像地址:
1、东软信息学院的 Android SDK 镜像,比配置代理下载快多了。
配置地址, http://mirrors.neusoft.edu.cn/configurations.we#android
2、北京化工大学的:
IPV4:ubuntu.buct.edu.cn
IPV4:ubuntu.buct.cn
IPV6:ubuntu.buct6.edu.cn
- HTML无害化和Sanitize模块
bijian1013
JavaScriptAngularJSLinkySanitize
一.ng-bind-html、ng-bind-html-unsafe
AngularJS非常注重安全方面的问题,它会尽一切可能把大多数攻击手段最小化。其中一个攻击手段是向你的web页面里注入不安全的HTML,然后利用它触发跨站攻击或者注入攻击。
考虑这样一个例子,假设我们有一个变量存
- [Maven学习笔记二]Maven命令
bit1129
maven
mvn compile
compile编译命令将src/main/java和src/main/resources中的代码和配置文件编译到target/classes中,不会对src/test/java中的测试类进行编译
MVN编译使用
maven-resources-plugin:2.6:resources
maven-compiler-plugin:2.5.1:compile
&nbs
- 【Java命令二】jhat
bit1129
Java命令
jhat用于分析使用jmap dump的文件,,可以将堆中的对象以html的形式显示出来,包括对象的数量,大小等等,并支持对象查询语言。 jhat默认开启监听端口7000的HTTP服务,jhat是Java Heap Analysis Tool的缩写
1. 用法:
[hadoop@hadoop bin]$ jhat -help
Usage: jhat [-stack <bool&g
- JBoss 5.1.0 GA:Error installing to Instantiated: name=AttachmentStore state=Desc
ronin47
进到类似目录 server/default/conf/bootstrap,打开文件 profile.xml找到: Xml代码<bean
name="AttachmentStore"
class="org.jboss.system.server.profileservice.repository.AbstractAtta
- 写给初学者的6条网页设计安全配色指南
brotherlamp
UIui自学ui视频ui教程ui资料
网页设计中最基本的原则之一是,不管你花多长时间创造一个华丽的设计,其最终的角色都是这场秀中真正的明星——内容的衬托
我仍然清楚地记得我最早的一次美术课,那时我还是一个小小的、对凡事都充满渴望的孩子,我摆放出一大堆漂亮的彩色颜料。我仍然记得当我第一次看到原色与另一种颜色混合变成第二种颜色时的那种兴奋,并且我想,既然两种颜色能创造出一种全新的美丽色彩,那所有颜色
- 有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。写一个函数实现。复杂度是什么。
bylijinnan
java算法面试
import java.util.Random;
import java.util.Set;
import java.util.TreeSet;
/**
* http://weibo.com/1915548291/z7HtOF4sx
* #面试题#有一个数组,每次从中间随机取一个,然后放回去,当所有的元素都被取过,返回总共的取的次数。
* 写一个函数实现。复杂度是什么
- struts2获得request、session、application方式
chiangfai
application
1、与Servlet API解耦的访问方式。
a.Struts2对HttpServletRequest、HttpSession、ServletContext进行了封装,构造了三个Map对象来替代这三种对象要获取这三个Map对象,使用ActionContext类。
----->
package pro.action;
import java.util.Map;
imp
- 改变python的默认语言设置
chenchao051
python
import sys
sys.getdefaultencoding()
可以测试出默认语言,要改变的话,需要在python lib的site-packages文件夹下新建:
sitecustomize.py, 这个文件比较特殊,会在python启动时来加载,所以就可以在里面写上:
import sys
sys.setdefaultencoding('utf-8')
&n
- mysql导入数据load data infile用法
daizj
mysql导入数据
我们常常导入数据!mysql有一个高效导入方法,那就是load data infile 下面来看案例说明
基本语法:
load data [low_priority] [local] infile 'file_name txt' [replace | ignore]
into table tbl_name
[fields
[terminated by't']
[OPTI
- phpexcel导入excel表到数据库简单入门示例
dcj3sjt126com
PHPExcel
跟导出相对应的,同一个数据表,也是将phpexcel类放在class目录下,将Excel表格中的内容读取出来放到数据库中
<?php
error_reporting(E_ALL);
set_time_limit(0);
?>
<html>
<head>
<meta http-equiv="Content-Type"
- 22岁到72岁的男人对女人的要求
dcj3sjt126com
22岁男人对女人的要求是:一,美丽,二,性感,三,有份具品味的职业,四,极有耐性,善解人意,五,该聪明的时候聪明,六,作小鸟依人状时尽量自然,七,怎样穿都好看,八,懂得适当地撒娇,九,虽作惊喜反应,但看起来自然,十,上了床就是个无条件荡妇。 32岁的男人对女人的要求,略作修定,是:一,入得厨房,进得睡房,二,不必服侍皇太后,三,不介意浪漫蜡烛配盒饭,四,听多过说,五,不再傻笑,六,懂得独
- Spring和HIbernate对DDM设计的支持
e200702084
DAO设计模式springHibernate领域模型
A:数据访问对象
DAO和资源库在领域驱动设计中都很重要。DAO是关系型数据库和应用之间的契约。它封装了Web应用中的数据库CRUD操作细节。另一方面,资源库是一个独立的抽象,它与DAO进行交互,并提供到领域模型的“业务接口”。
资源库使用领域的通用语言,处理所有必要的DAO,并使用领域理解的语言提供对领域模型的数据访问服务。
- NoSql 数据库的特性比较
geeksun
NoSQL
Redis 是一个开源的使用ANSI C语言编写、支持网络、可基于内存亦可持久化的日志型、Key-Value数据库,并提供多种语言的API。目前由VMware主持开发工作。
1. 数据模型
作为Key-value型数据库,Redis也提供了键(Key)和值(Value)的映射关系。除了常规的数值或字符串,Redis的键值还可以是以下形式之一:
Lists (列表)
Sets
- 使用 Nginx Upload Module 实现上传文件功能
hongtoushizi
nginx
转载自: http://www.tuicool.com/wx/aUrAzm
普通网站在实现文件上传功能的时候,一般是使用Python,Java等后端程序实现,比较麻烦。Nginx有一个Upload模块,可以非常简单的实现文件上传功能。此模块的原理是先把用户上传的文件保存到临时文件,然后在交由后台页面处理,并且把文件的原名,上传后的名称,文件类型,文件大小set到页面。下
- spring-boot-web-ui及thymeleaf基本使用
jishiweili
springthymeleaf
视图控制层代码demo如下:
@Controller
@RequestMapping("/")
public class MessageController {
private final MessageRepository messageRepository;
@Autowired
public MessageController(Mes
- 数据源架构模式之活动记录
home198979
PHP架构活动记录数据映射
hello!架构
一、概念
活动记录(Active Record):一个对象,它包装数据库表或视图中某一行,封装数据库访问,并在这些数据上增加了领域逻辑。
对象既有数据又有行为。活动记录使用直截了当的方法,把数据访问逻辑置于领域对象中。
二、实现简单活动记录
活动记录在php许多框架中都有应用,如cakephp。
<?php
/**
* 行数据入口类
*
- Linux Shell脚本之自动修改IP
pda158
linuxcentosDebian脚本
作为一名
Linux SA,日常运维中很多地方都会用到脚本,而服务器的ip一般采用静态ip或者MAC绑定,当然后者比较操作起来相对繁琐,而前者我们可以设置主机名、ip信息、网关等配置。修改成特定的主机名在维护和管理方面也比较方便。如下脚本用途为:修改ip和主机名等相关信息,可以根据实际需求修改,举一反三!
#!/bin/sh
#auto Change ip netmask ga
- 开发环境搭建
独浮云
eclipsejdktomcat
最近在开发过程中,经常出现MyEclipse内存溢出等错误,需要重启的情况,好麻烦。对于一般的JAVA+TOMCAT项目开发,其实没有必要使用重量级的MyEclipse,使用eclipse就足够了。尤其是开发机器硬件配置一般的人。
&n
- 操作日期和时间的工具类
vipbooks
工具类
大家好啊,好久没有来这里发文章了,今天来逛逛,分享一篇刚写不久的操作日期和时间的工具类,希望对大家有所帮助。
/*
* @(#)DataFormatUtils.java 2010-10-10
*
* Copyright 2010 BianJing,All rights reserved.
*/
package test;
impor