- 图论算法经典题目解析:DFS、BFS与拓扑排序实战
周童學
数据结构与算法深度优先算法图论
图论算法经典题目解析:DFS、BFS与拓扑排序实战图论问题是算法面试中的高频考点,本博客将通过四道LeetCode经典题目(均来自"Top100Liked"题库),深入讲解图论的核心算法思想和实现技巧。涵盖DFS、BFS、拓扑排序和前缀树等知识点,每道题配有Java实现和易错点分析。1.岛屿数量(DFS遍历)问题描述给定一个由'1'(陆地)和'0'(水)组成的二维网格,计算岛屿的数量。岛屿由水平或
- 图论:并查集
Submit Failed
图论并查集
入门久闻并查集的大名,今天来一探究竟,到底什么是并查集,并查集有什么用?并查集(DisjointSetUnion,DSU)是一种处理不相交集合的合并及查询问题的数据结构。其实并查集的作用主要就有两个:1、将两个元素添加到同一个集合2、判断两个元素是否在同一个集合内碰到诸如此类的问题,就可以条件反射的去想到用并查集来解决了。首先就是预处理的操作了只需要将所有的点连向自己即可:voidpre_hand
- 代码随想录算法训练营第五十八天 | 图论part08
sagen aller
算法图论
117.软件构建在这一题中,只需要输出一种方法。使用BFS的方法,找到入度为0的节点,将其从树中删去,重复上述步骤,直到没有入度为0的节点。如果此时没有删除所有的节点,表明这个有向图有环,输出-1.否则,正常输出。#include#include#include#include#includeusingnamespacestd;intmain(){intn,m;ints,t;ifstreaminf
- 图论的题目整合(Dijkstra)
_Free_fish_
图论算法
前置知识:Dijkstra题目1AT_abc070_d[ABC070D]TransitTreePath由于点KKK是固定的,并且是无向图(题目说是树),其实可以理解为求点KKK到点xjx_jxj的最短路加上点KKK到点yjy_jyj的最短路。由于边权cic_ici的范围是1≤ci≤1091\lec_i\le10^91≤ci≤109,没有负数,所以用Dijkstra以KKK为起点跑最短路。#incl
- 代码随想录算法训练营第五十三天|图论part4
xindafu
图论
110.字符串接龙题目链接:110.字符串接龙文章讲解:代码随想录思路:把每个字符串看成图的一个节点。转换为求无权图两节点的的最短路径。求最短路径用bfs#include#include#include#include#includeusingnamespacestd;unordered_mapmymap;boolcanTransform(stringa,stringb){intcount=0;i
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 无人机中的数学应用-第二章:航线规划:数学驱动的路径优化
无人装备硬件开发爱好者
无人机无人机数学应用无人机航迹规划飞行路径数学应用
目录引言:数学如何为航线规划“导航”1.路径规划数学发展的历史脉络:从图论到智能算法1.1启蒙阶段(17-19世纪):几何与微积分的奠基1.2现代理论奠基期(20世纪上半叶):算法思想的突破1.3算法爆发期(20世纪末):从Dijkstra到A*的飞跃1.4智能优化时代(21世纪至今):从单一算法到融合模型2.路径搜索算法的基本原理:从“盲目搜索”到“智能导航”2.1改进A*算法:无人机路径规划的
- 算法日记 42 day 图论
橘子遇见BUG
算法日记算法图论
今天来看看广度优先搜索,并且写几个题。刷到这里我才想起来,当时第一次面试的时候问的就是这个题,当时大概知道一点思路,但不清楚是图论方面的,更别说写出来了。广度优先搜索(BFS)不同于深度优先,广度优先讲究的是先遍历完一层,在遍历下一层,就这转圈圈,直到遍历完所有。就像这样那么对于广搜的写法来说,不管是队列,栈,或者数组都可以。不过方便遍历,大多使用的是队列,接下来的题目我也使用队列。那么广搜的代码
- 力扣——剑指 Offer II 118. 多余的边(图论:并查集)
lllzzzhhh2589
算法leetcode图论算法并查集
思路一开始想简单了,用哈希set存所有元素,出现重复就是多余边,但是连接两个集合的边并不是多余边;因此需要用并查集,如果不在一个集合,就合并,如果在一个集合,这个边就是重复的,更新为答案。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合
- 【图论】倍增与lca
arin876
图论算法
voiddfs(longu,longfather){dep[u]=dep[father]+1;//只在这里初始化depfor(longi=1;(1=0;i--){//跳到同一个深度if(dep[fa[x][i]]>=dep[y])x=fa[x][i];if(x==y)returnx;}for(inti=20;i>=0;i--){if(fa[x][i]!=fa[y][i]){//一起跳x=fa[x]
- 代码随想录算法训练营第五十天|图论part1
xindafu
算法图论c语言
98.所有可达路径题目链接:98.所有可达路径文章讲解:代码随想录输入输出格式:头文件#includecin>>x;(给x,所以是向着x的)cout#includeusingnamespacestd;vector>ans;vectorpath;voiddfs(vector>graph,intstart,intend){if(start==end){//终止条件ans.push_back(path)
- 代码随想录算法训练营Day59 || 图论part 09
傲世尊
算法图论
dijkstra算法(堆优化版):利用小顶堆来减少一层for循环。因为要存储边的权值,邻接表里就需要存pair了。Bellman_ford算法精讲,卡玛网94题:变化在于权值出现了负数,用动态规划思想来维护MinDist数组。核心在于对所有边进行n-1次松弛处理,就可以得出起始点到所有节点的最短路径。图论章节主打一个走马观花属于是。
- 代码随想录算法训练营第五十二天|图论part3
xindafu
算法图论深度优先
101.孤岛的总面积题目链接:101.孤岛的总面积文章讲解:代码随想录思路:与岛屿面积差不多,区别是再dfs的时候,如果碰到越界的,需要用一个符号标记这不是孤岛再continue#include#includeusingnamespacestd;intdir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};voiddfs(vector>graph,vector>&visited
- python中的位运算符
Mophead_Zarathustra
Hot100Mophead的小白刷题笔记leetcodepython
python中的位运算符本文由gpt生成,仅作为本人自用的参考资料使用,不保证完全正确!Python中的位运算是非常常用且高效的操作,尤其在算法题、图论、压缩状态、权限管理等场景中非常有用。1️⃣位运算符总览运算符名称作用示例(a=0b0110,b=0b1011)结果(二进制)&按位与(AND)两位都为 1 ⇒ 1,否则 0a&b0b0010|按位或(OR)只要有一位为 1 ⇒ 1a|b0b111
- 算法竞赛备赛——【图论】拓扑排序
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
拓扑排序算法前置知识:1.DAG图:一个无环的有向图,即有向无环图。2.AOV网络:在⼀个表示⼯程的有向图中,⽤顶点表示活动,⽤弧表示活动之间的优先关系的有向图称为顶点表示活动的⽹(ActivityOnVertexNetwork),简称AOV⽹。拓扑排序:其实就是对⼀个DAG图构造拓扑序列的过程。拓扑排序算法:kahn(卡恩)算法(基于BFS)和基于DFS的算法。kahn(卡恩)算法可以判环时间复
- 【算法-图论】图的定义与一些常用术语
小蛋编程
C++c++算法
【算法-图论】图的定义图论编辑器1:https://csacademy.com/app/graph_editor/图论编辑器2:https://graphonline.top/ch/1.图是什么图(graph)由节点(node)和边(edge)组成。其中,节点集合记为VVV,边集合记为EEE。每条边连接两个节点,某些图的边可能具有方向性。集合元素的数量用该集合的绝对值来表示。通过对比可以看出,图比
- 【图论】CF——B. Chamber of Secrets (0-1BFS)
KyollBM
图论算法
链接:https://codeforces.com/problemset/problem/173/B题目:思路:初识01BFS什么是01BFS呢?通常的BFS为一步权值为1,而某些题需要的不是走到步数,而是某种操作数,如花费一个操作可以走k步,而不花费只能走1步,通常我们使用双端队列可插队的性质来进行代码的编写,具体的对于不花费,那么就插入到前面,而对于花费则插入到最后本题中操作为“四射”,所以按
- 21、子图同构问题的深度解析
metal
子图同构图论算法
子图同构问题的深度解析1.子图同构问题概述子图同构问题是图论中的一个核心问题,广泛应用于社交网络分析、生物信息学、模式识别等领域。该问题的定义是:给定两个图,一个是较大的主图(HostGraph),另一个是较小的模式图(PatternGraph),判断主图中是否存在一个子图与模式图同构。简单来说,就是要找到主图中与模式图结构完全一致的子图。子图同构问题的难度在于它是一个NP完全问题,意味着在最坏情
- Dijkstra算法求最短路径问题
Dijkstra算法求最短路径问题——HM图论中最常见的问题就应是最短路径问题了,解决这一问题的几个基本算法有三个:Floyed、Dijkstra和SPFA了。现在我来浅谈一下Dijkstra的思想与实现。单纯的Dijkstra并不是很快,算一个点到其余各点的时间复杂度是O(n^2)级别,算每个点到其余各点的复杂度就是O(n^3)了,在提高组竞赛中不占优势,但其进行优化后便很强大了,如用堆优化Di
- 算法:floyd和高精度 洛谷 最短路 P1037 [NOIP 2002 普及组] 产生数
健仙
算法算法数据结构c++
思路:因为某个数变成另一个数是单向的,并且一个数变成另一个数后还可以变,让我联想到图论的内容,一个数变成其他数就相当于这个数与另一个数有单向边,而且边之间的线路可以让一个数可能变成很多数,因为数据量很小,我就想到了floyd,就是我们用floyd做传递闭包,得出一个数可以变成哪些数,然后将每个位看一遍,乘起来就是答案,不过这里有个小坑,答案超过了2的64次方,所以还要高精度算法处理一下。代码:#i
- 算法竞赛备赛——【图论】求最短路径——Floyd算法
Aurora_wmroy
算法竞赛备赛算法图论c++蓝桥杯数据结构
floyd算法基于动态规划应用:求多源最短路时间复杂度:n^3dijkstra:不能解决负边权floyd:能解决负边权不能解决负边权回路问题求最短路径:dijkstrabfsfloyd思路1.让任意两点之间的距离变短:引入中转点k通过k来中转i---->k---->jj2.找状态:n个点都可以做中转点的情况下,i到j之间的最短路径的长度是x最终状态:dp[n][i][j]=x;中间状态:dp[k]
- Java机考题:815. 公交路线 图论BFS
吗喽对你问好
java图论宽度优先
给你一个数组routes,表示一系列公交线路,其中每个routes[i]表示一条公交线路,第i辆公交车将会在上面循环行驶。例如,路线routes[0]=[1,5,7]表示第0辆公交车会一直按序列1->5->7->1->5->7->1->...这样的车站路线行驶。现在从source车站出发(初始时不在公交车上),要前往target车站。期间仅可乘坐公交车。求出最少乘坐的公交车数量。如果不可能到达终点
- 图论篇--代码随想录算法训练营第五十九天打卡|Bellman_ford 算法精讲,SPFA算法,Bellman ford之判断负权回路,Bellman ford之单源有限最短路
無量空所
leetcode算法图论c++
本系列算法用来解决有负权边的情况Bellman_ford算法精讲题目链接:94.城市间货物运输I题目描述:某国为促进城市间经济交流,决定对货物运输提供补贴。共有n个编号为1到n的城市,通过道路网络连接,网络中的道路仅允许从某个城市单向通行到另一个城市,不能反向通行。网络中的道路都有各自的运输成本和政府补贴,道路的权值计算方式为:运输成本-政府补贴。权值为正表示扣除了政府补贴后运输货物仍需支付的费用
- LeetCode第317题_离建筑物最近的距离
@蓝莓果粒茶
算法leetcodelinux算法c#学习pythonc++
LeetCode第317题:离建筑物最近的距离文章摘要本文详细解析LeetCode第317题"离建筑物最近的距离",这是一道图论和广度优先搜索的问题。文章提供了基于多源BFS的解法,包含C#、Python、C++三种语言实现,配有详细的算法分析和性能对比。适合想要提升图论算法能力的程序员。核心知识点:广度优先搜索、图论、矩阵遍历难度等级:困难推荐人群:具有图论基础,想要提升算法能力的程序员题目描述
- Swift 图论实战:DFS 算法解锁 LeetCode 323 连通分量个数
网罗开发
Swift算法swift图论
文章目录摘要描述示例题解答案DFS遍历每个连通区域Union-Find(并查集)题解代码分析(Swift实现:DFS)题解代码详解构建邻接表DFS深度优先搜索遍历所有节点示例测试及结果示例1示例2示例3时间复杂度分析空间复杂度分析总结摘要图是算法中最具挑战性的结构之一,而“连通分量”这个词听起来也有点像社交网络里的“圈子”概念。给你一张无向图,节点编号从0到n-1,现在请你找出这个图中到底有多少个
- C++最小生成树算法详解
你的冰西瓜
c++算法图论最小生成树
C++最小生成树算法详解引言在图论中,最小生成树(MinimumSpanningTree,MST)是一个非常重要的概念。对于给定的带权无向连通图,最小生成树是一棵包含图中所有顶点且边权之和最小的树。它在网络设计、电路布线等实际应用中具有广泛的意义。本文将详细介绍两种常见的最小生成树算法:Prim算法和Kruskal算法,并提供C++实现代码。一、最小生成树的基本概念1.1生成树一个连通图的生成树是
- 算法学习笔记:10.Prim 算法——从原理到实战,涵盖 LeetCode 与考研 408 例题
呆呆企鹅仔
算法学习算法学习笔记JavaPrim
在图论的世界里,最小生成树(MinimumSpanningTree,MST)是一个至关重要的概念,它在通信网络设计、电路布线、交通规划等领域有着广泛的应用。求解最小生成树的算法中,Prim算法以其独特的“逐步扩展”思想占据着重要地位。Prim算法的基本概念在正式介绍Prim算法之前,我们先回顾一下最小生成树的定义:对于一个具有n个顶点的带权连通图,其最小生成树是包含所有n个顶点的一棵无环子图,且该
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 搜索之BFS
Luther coder
宽度优先c++
目录一.BFS简介二.BFS主要应用和实现三.典型例题(1)P1443马的遍历-洛谷(2)P8693[蓝桥杯2019国AC]大胖子走迷宫-洛谷四.总结一.BFS简介BFS(图论):广度优先搜索,是一种用于遍历或搜索树或图的算法。所谓广度优先,就是说按照圈层搜索。二.BFS主要应用和实现在搜索算法中,该BFS常常指利用队列实现广度优先搜索,从而寻找最短距离。与图论中的BFS算法有一定相似之处,但并不
- AtCoder Beginner Contest 412(ABCDE)
前言回来喽!!前一阵子期末周快复习疯了,接下来还想准备数学建模,感觉高中都没这么忙过T^T。中间参加了一场百度之星的比赛,只AC了两题,感觉好难啊还是太菜了,希望能混个牌呜呜呜。图论和数论题好难,还得多练啊……一、A-TaskFailedSuccessfully#includeusingnamespacestd;typedeflonglongll;typedefpairpii;voidsolve(
- iOS http封装
374016526
ios服务器交互http网络请求
程序开发避免不了与服务器的交互,这里打包了一个自己写的http交互库。希望可以帮到大家。
内置一个basehttp,当我们创建自己的service可以继承实现。
KuroAppBaseHttp *baseHttp = [[KuroAppBaseHttp alloc] init];
[baseHttp setDelegate:self];
[baseHttp
- lolcat :一个在 Linux 终端中输出彩虹特效的命令行工具
brotherlamp
linuxlinux教程linux视频linux自学linux资料
那些相信 Linux 命令行是单调无聊且没有任何乐趣的人们,你们错了,这里有一些有关 Linux 的文章,它们展示着 Linux 是如何的有趣和“淘气” 。
在本文中,我将讨论一个名为“lolcat”的小工具 – 它可以在终端中生成彩虹般的颜色。
何为 lolcat ?
Lolcat 是一个针对 Linux,BSD 和 OSX 平台的工具,它类似于 cat 命令,并为 cat
- MongoDB索引管理(1)——[九]
eksliang
mongodbMongoDB管理索引
转载请出自出处:http://eksliang.iteye.com/blog/2178427 一、概述
数据库的索引与书籍的索引类似,有了索引就不需要翻转整本书。数据库的索引跟这个原理一样,首先在索引中找,在索引中找到条目以后,就可以直接跳转到目标文档的位置,从而使查询速度提高几个数据量级。
不使用索引的查询称
- Informatica参数及变量
18289753290
Informatica参数变量
下面是本人通俗的理解,如有不对之处,希望指正 info参数的设置:在info中用到的参数都在server的专门的配置文件中(最好以parma)结尾 下面的GLOBAl就是全局的,$开头的是系统级变量,$$开头的变量是自定义变量。如果是在session中或者mapping中用到的变量就是局部变量,那就把global换成对应的session或者mapping名字。
[GLOBAL] $Par
- python 解析unicode字符串为utf8编码字符串
酷的飞上天空
unicode
php返回的json字符串如果包含中文,则会被转换成\uxx格式的unicode编码字符串返回。
在浏览器中能正常识别这种编码,但是后台程序却不能识别,直接输出显示的是\uxx的字符,并未进行转码。
转换方式如下
>>> import json
>>> q = '{"text":"\u4
- Hibernate的总结
永夜-极光
Hibernate
1.hibernate的作用,简化对数据库的编码,使开发人员不必再与复杂的sql语句打交道
做项目大部分都需要用JAVA来链接数据库,比如你要做一个会员注册的 页面,那么 获取到用户填写的 基本信后,你要把这些基本信息存入数据库对应的表中,不用hibernate还有mybatis之类的框架,都不用的话就得用JDBC,也就是JAVA自己的,用这个东西你要写很多的代码,比如保存注册信
- SyntaxError: Non-UTF-8 code starting with '\xc4'
随便小屋
python
刚开始看一下Python语言,传说听强大的,但我感觉还是没Java强吧!
写Hello World的时候就遇到一个问题,在Eclipse中写的,代码如下
'''
Created on 2014年10月27日
@author: Logic
'''
print("Hello World!");
运行结果
SyntaxError: Non-UTF-8
- 学会敬酒礼仪 不做酒席菜鸟
aijuans
菜鸟
俗话说,酒是越喝越厚,但在酒桌上也有很多学问讲究,以下总结了一些酒桌上的你不得不注意的小细节。
细节一:领导相互喝完才轮到自己敬酒。敬酒一定要站起来,双手举杯。
细节二:可以多人敬一人,决不可一人敬多人,除非你是领导。
细节三:自己敬别人,如果不碰杯,自己喝多少可视乎情况而定,比如对方酒量,对方喝酒态度,切不可比对方喝得少,要知道是自己敬人。
细节四:自己敬别人,如果碰杯,一
- 《创新者的基因》读书笔记
aoyouzi
读书笔记《创新者的基因》
创新者的基因
创新者的“基因”,即最具创意的企业家具备的五种“发现技能”:联想,观察,实验,发问,建立人脉。
第一部分破坏性创新,从你开始
第一章破坏性创新者的基因
如何获得启示:
发现以下的因素起到了催化剂的作用:(1) -个挑战现状的问题;(2)对某项技术、某个公司或顾客的观察;(3) -次尝试新鲜事物的经验或实验;(4)与某人进行了一次交谈,为他点醒
- 表单验证技术
百合不是茶
JavaScriptDOM对象String对象事件
js最主要的功能就是验证表单,下面是我对表单验证的一些理解,贴出来与大家交流交流 ,数显我们要知道表单验证需要的技术点, String对象,事件,函数
一:String对象;通常是对字符串的操作;
1,String的属性;
字符串.length;表示该字符串的长度;
var str= "java"
- web.xml配置详解之context-param
bijian1013
javaservletweb.xmlcontext-param
一.格式定义:
<context-param>
<param-name>contextConfigLocation</param-name>
<param-value>contextConfigLocationValue></param-value>
</context-param>
作用:该元
- Web系统常见编码漏洞(开发工程师知晓)
Bill_chen
sqlPHPWebfckeditor脚本
1.头号大敌:SQL Injection
原因:程序中对用户输入检查不严格,用户可以提交一段数据库查询代码,根据程序返回的结果,
获得某些他想得知的数据,这就是所谓的SQL Injection,即SQL注入。
本质:
对于输入检查不充分,导致SQL语句将用户提交的非法数据当作语句的一部分来执行。
示例:
String query = "SELECT id FROM users
- 【MongoDB学习笔记六】MongoDB修改器
bit1129
mongodb
本文首先介绍下MongoDB的基本的增删改查操作,然后,详细介绍MongoDB提供的修改器,以完成各种各样的文档更新操作 MongoDB的主要操作
show dbs 显示当前用户能看到哪些数据库
use foobar 将数据库切换到foobar
show collections 显示当前数据库有哪些集合
db.people.update,update不带参数,可
- 提高职业素养,做好人生规划
白糖_
人生
培训讲师是成都著名的企业培训讲师,他在讲课中提出的一些观点很新颖,在此我收录了一些分享一下。注:讲师的观点不代表本人的观点,这些东西大家自己揣摩。
1、什么是职业规划:职业规划并不完全代表你到什么阶段要当什么官要拿多少钱,这些都只是梦想。职业规划是清楚的认识自己现在缺什么,这个阶段该学习什么,下个阶段缺什么,又应该怎么去规划学习,这样才算是规划。
- 国外的网站你都到哪边看?
bozch
技术网站国外
学习软件开发技术,如果没有什么英文基础,最好还是看国内的一些技术网站,例如:开源OSchina,csdn,iteye,51cto等等。
个人感觉如果英语基础能力不错的话,可以浏览国外的网站来进行软件技术基础的学习,例如java开发中常用的到的网站有apache.org 里面有apache的很多Projects,springframework.org是spring相关的项目网站,还有几个感觉不错的
- 编程之美-光影切割问题
bylijinnan
编程之美
package a;
public class DisorderCount {
/**《编程之美》“光影切割问题”
* 主要是两个问题:
* 1.数学公式(设定没有三条以上的直线交于同一点):
* 两条直线最多一个交点,将平面分成了4个区域;
* 三条直线最多三个交点,将平面分成了7个区域;
* 可以推出:N条直线 M个交点,区域数为N+M+1。
- 关于Web跨站执行脚本概念
chenbowen00
Web安全跨站执行脚本
跨站脚本攻击(XSS)是web应用程序中最危险和最常见的安全漏洞之一。安全研究人员发现这个漏洞在最受欢迎的网站,包括谷歌、Facebook、亚马逊、PayPal,和许多其他网站。如果你看看bug赏金计划,大多数报告的问题属于 XSS。为了防止跨站脚本攻击,浏览器也有自己的过滤器,但安全研究人员总是想方设法绕过这些过滤器。这个漏洞是通常用于执行cookie窃取、恶意软件传播,会话劫持,恶意重定向。在
- [开源项目与投资]投资开源项目之前需要统计该项目已有的用户数
comsci
开源项目
现在国内和国外,特别是美国那边,突然出现很多开源项目,但是这些项目的用户有多少,有多少忠诚的粉丝,对于投资者来讲,完全是一个未知数,那么要投资开源项目,我们投资者必须准确无误的知道该项目的全部情况,包括项目发起人的情况,项目的维持时间..项目的技术水平,项目的参与者的势力,项目投入产出的效益.....
- oracle alert log file(告警日志文件)
daizj
oracle告警日志文件alert log file
The alert log is a chronological log of messages and errors, and includes the following items:
All internal errors (ORA-00600), block corruption errors (ORA-01578), and deadlock errors (ORA-00060)
- 关于 CAS SSO 文章声明
denger
SSO
由于几年前写了几篇 CAS 系列的文章,之后陆续有人参照文章去实现,可都遇到了各种问题,同时经常或多或少的收到不少人的求助。现在这时特此说明几点:
1. 那些文章发表于好几年前了,CAS 已经更新几个很多版本了,由于近年已经没有做该领域方面的事情,所有文章也没有持续更新。
2. 文章只是提供思路,尽管 CAS 版本已经发生变化,但原理和流程仍然一致。最重要的是明白原理,然后
- 初二上学期难记单词
dcj3sjt126com
englishword
lesson 课
traffic 交通
matter 要紧;事物
happy 快乐的,幸福的
second 第二的
idea 主意;想法;意见
mean 意味着
important 重要的,重大的
never 从来,决不
afraid 害怕 的
fifth 第五的
hometown 故乡,家乡
discuss 讨论;议论
east 东方的
agree 同意;赞成
bo
- uicollectionview 纯代码布局, 添加头部视图
dcj3sjt126com
Collection
#import <UIKit/UIKit.h>
@interface myHeadView : UICollectionReusableView
{
UILabel *TitleLable;
}
-(void)setTextTitle;
@end
#import "myHeadView.h"
@implementation m
- N 位随机数字串的 JAVA 生成实现
FX夜归人
javaMath随机数Random
/**
* 功能描述 随机数工具类<br />
* @author FengXueYeGuiRen
* 创建时间 2014-7-25<br />
*/
public class RandomUtil {
// 随机数生成器
private static java.util.Random random = new java.util.R
- Ehcache(09)——缓存Web页面
234390216
ehcache页面缓存
页面缓存
目录
1 SimplePageCachingFilter
1.1 calculateKey
1.2 可配置的初始化参数
1.2.1 cach
- spring中少用的注解@primary解析
jackyrong
primary
这次看下spring中少见的注解@primary注解,例子
@Component
public class MetalSinger implements Singer{
@Override
public String sing(String lyrics) {
return "I am singing with DIO voice
- Java几款性能分析工具的对比
lbwahoo
java
Java几款性能分析工具的对比
摘自:http://my.oschina.net/liux/blog/51800
在给客户的应用程序维护的过程中,我注意到在高负载下的一些性能问题。理论上,增加对应用程序的负载会使性能等比率的下降。然而,我认为性能下降的比率远远高于负载的增加。我也发现,性能可以通过改变应用程序的逻辑来提升,甚至达到极限。为了更详细的了解这一点,我们需要做一些性能
- JVM参数配置大全
nickys
jvm应用服务器
JVM参数配置大全
/usr/local/jdk/bin/java -Dresin.home=/usr/local/resin -server -Xms1800M -Xmx1800M -Xmn300M -Xss512K -XX:PermSize=300M -XX:MaxPermSize=300M -XX:SurvivorRatio=8 -XX:MaxTenuringThreshold=5 -
- 搭建 CentOS 6 服务器(14) - squid、Varnish
rensanning
varnish
(一)squid
安装
# yum install httpd-tools -y
# htpasswd -c -b /etc/squid/passwords squiduser 123456
# yum install squid -y
设置
# cp /etc/squid/squid.conf /etc/squid/squid.conf.bak
# vi /etc/
- Spring缓存注解@Cache使用
tom_seed
spring
参考资料
http://www.ibm.com/developerworks/cn/opensource/os-cn-spring-cache/
http://swiftlet.net/archives/774
缓存注解有以下三个:
@Cacheable @CacheEvict @CachePut
- dom4j解析XML时出现"java.lang.noclassdeffounderror: org/jaxen/jaxenexception"错误
xp9802
java.lang.NoClassDefFoundError: org/jaxen/JaxenExc
关键字: java.lang.noclassdeffounderror: org/jaxen/jaxenexception
使用dom4j解析XML时,要快速获取某个节点的数据,使用XPath是个不错的方法,dom4j的快速手册里也建议使用这种方式
执行时却抛出以下异常:
Exceptio