- 编程算法:技术创新的引擎与业务增长的核心驱动力
在数字经济时代,算法已成为推动技术创新与业务增长的隐形引擎。从存内计算突破冯·诺依曼瓶颈,到动态规划优化万亿级金融交易,编程算法正在重塑产业竞争格局。一、存内计算:突破冯·诺依曼瓶颈的算法革命1.1存内计算的基本原理传统计算架构中90%的能耗消耗在数据搬运上。存内计算(Processing-in-Memory)通过直接在存储单元执行计算,实现能效10-100倍提升:#传统计算vs存内计算能耗模型i
- 图论算法经典题目解析:DFS、BFS与拓扑排序实战
周童學
数据结构与算法深度优先算法图论
图论算法经典题目解析:DFS、BFS与拓扑排序实战图论问题是算法面试中的高频考点,本博客将通过四道LeetCode经典题目(均来自"Top100Liked"题库),深入讲解图论的核心算法思想和实现技巧。涵盖DFS、BFS、拓扑排序和前缀树等知识点,每道题配有Java实现和易错点分析。1.岛屿数量(DFS遍历)问题描述给定一个由'1'(陆地)和'0'(水)组成的二维网格,计算岛屿的数量。岛屿由水平或
- 算法刷题-动态规划之背包问题
1.背包问题之01(4.30)题目描述小明有一个容量为VV的背包。这天他去商场购物,商场一共有NN件物品,第ii件物品的体积为wiwi,价值为vivi。小明想知道在购买的物品总体积不超过VV的情况下所能获得的最大价值为多少,请你帮他算算。输入描述输入第11行包含两个正整数N,VN,V,表示商场物品的数量和小明的背包容量。第2∼N+12∼N+1行包含22个正整数w,vw,v,表示物品的体积和价值。1
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 【华为机试】121. 买卖股票的最佳时机
不爱熬夜的Coder
算法华为机试golang华为算法华为od深度优先数据结构
文章目录121.买卖股票的最佳时机描述示例1示例2示例3提示解题思路方法一:一次遍历(推荐)方法二:暴力解法方法三:动态规划方法四:分治法代码实现复杂度分析测试用例完整题解代码121.买卖股票的最佳时机描述给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大
- 120.三角形最小路径和
HamletSunS
题解:给出一个三角形,求从顶点到最底层的路径的最小和方法:动态规划2个参数,i,j,代表从(i,j)出发直到底层的最小路径和。f(i,j)=t[i][j]+min(f[i+1][j],f[i+1][j+1])优化方案:根据dp的方程可以发现,当前元素只与下一行的同列和右侧有关系,与左侧无关。那么优化思路就是只用1行,从左开始往右更新即可。这样就可以只用一维数组dp[j]代表从某行(通过不断更新可更
- Floyd算法详解——包括解题步骤与编程
HOLD ON!
算法
Floyd算法详解——包括解题步骤与编程SweeNeil展开一、Floyd算法原理Floyd算法是一个经典的动态规划算法,它又被称为插点法。该算法名称以创始人之一、1978年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名。Floyd算法是一种利用动态规划的思想寻找给定的加权图中多源点之间最短路径的算法,算法目标是寻找从点i到点j的最短路径。从任意节点i到任意节点j的最短路径不外乎2种
- 动态规划 (Dynamic Programming) 算法概念-JS示例
香蕉可乐荷包蛋
#动态规划算法动态规划javascript
核心概念解析动态规划是一种用于解决具有重叠子问题和最优子结构特性的复杂问题的算法设计技术。它通过将复杂问题分解为更小的子问题,并存储子问题的解来避免重复计算,从而提高效率。关键特性最优子结构:问题的最优解包含子问题的最优解重叠子问题:在递归求解过程中,相同的子问题被多次计算无后效性:某个阶段的状态一旦确定,就不会受到后续决策的影响动态规划与分治法的区别分治法:子问题不重叠,各自独立求解动态规划:子
- 动态规划 (Dynamic Programming) 算法概念-Python示例
香蕉可乐荷包蛋
#动态规划算法动态规划python
Python实例详解1.斐波那契数列#传统递归方法-效率低下O(2^n)deffibonacci_recursive(n):ifn=weights[i-1]:dp[i][w]=max(dp[i][w],dp[i-1][w-weights[i-1]]+values[i-1])returndp[n][capacity]#空间优化版本defknapsack_optimized(weights,value
- 图论:并查集
Submit Failed
图论并查集
入门久闻并查集的大名,今天来一探究竟,到底什么是并查集,并查集有什么用?并查集(DisjointSetUnion,DSU)是一种处理不相交集合的合并及查询问题的数据结构。其实并查集的作用主要就有两个:1、将两个元素添加到同一个集合2、判断两个元素是否在同一个集合内碰到诸如此类的问题,就可以条件反射的去想到用并查集来解决了。首先就是预处理的操作了只需要将所有的点连向自己即可:voidpre_hand
- 代码随想录算法训练营第五十八天 | 图论part08
sagen aller
算法图论
117.软件构建在这一题中,只需要输出一种方法。使用BFS的方法,找到入度为0的节点,将其从树中删去,重复上述步骤,直到没有入度为0的节点。如果此时没有删除所有的节点,表明这个有向图有环,输出-1.否则,正常输出。#include#include#include#include#includeusingnamespacestd;intmain(){intn,m;ints,t;ifstreaminf
- 图论的题目整合(Dijkstra)
_Free_fish_
图论算法
前置知识:Dijkstra题目1AT_abc070_d[ABC070D]TransitTreePath由于点KKK是固定的,并且是无向图(题目说是树),其实可以理解为求点KKK到点xjx_jxj的最短路加上点KKK到点yjy_jyj的最短路。由于边权cic_ici的范围是1≤ci≤1091\lec_i\le10^91≤ci≤109,没有负数,所以用Dijkstra以KKK为起点跑最短路。#incl
- 代码随想录算法训练营第五十三天|图论part4
xindafu
图论
110.字符串接龙题目链接:110.字符串接龙文章讲解:代码随想录思路:把每个字符串看成图的一个节点。转换为求无权图两节点的的最短路径。求最短路径用bfs#include#include#include#include#includeusingnamespacestd;unordered_mapmymap;boolcanTransform(stringa,stringb){intcount=0;i
- 用动态规划方法求解0-1背包问题
逢着
算法动态规划算法c++
如果你对动态规划方法求解0-1背包问题的思路不清晰,直接阅读代码并不是一个好的建议。推荐一个B站up主的视频讲解:0/1背包问题-动态规划练习地址(B站视频配套的网址)#includeusingnamespacestd;constintbagVolume=6;//背包体积constintitemNumber=4;//准备放入的物品数量constintrows=itemNumber+1;//tabl
- 算法在前端框架中的集成
引言算法是前端开发中提升性能和用户体验的重要工具。随着Web应用复杂性的增加,现代前端框架如React、Vue和Angular提供了强大的工具集,使得将算法与框架特性(如状态管理、虚拟DOM和组件化)无缝集成成为可能。从排序算法优化列表渲染到动态规划提升复杂计算效率,算法的集成能够显著改善应用的响应速度和资源利用率。本文将探讨如何将常见算法(排序、搜索和动态规划)集成到前端框架中,重点介绍框架特性
- 最短Hamilton路径
「止于纸扇」
#代码模板C++学习笔记算法数据结构
最短Hamilton路径在图论中,哈密顿路径是指在一个无向图中,经过所有顶点恰好一次且仅一次的路径。在这个问题中,我们将探讨如何在C++中找到给定图中的最短Hamilton路径。原理哈密顿路径问题可以通过动态规划算法求解。动态规划的基本思想是将原问题分解为子问题,然后从最小的子问题开始逐步解决,最终得到原问题的解。对于一个有n个顶点的无向图G(V,E),我们可以使用一个二维数组dp[i][j]来表
- 无人机中的数学应用-第二章:航线规划:数学驱动的路径优化
无人装备硬件开发爱好者
无人机无人机数学应用无人机航迹规划飞行路径数学应用
目录引言:数学如何为航线规划“导航”1.路径规划数学发展的历史脉络:从图论到智能算法1.1启蒙阶段(17-19世纪):几何与微积分的奠基1.2现代理论奠基期(20世纪上半叶):算法思想的突破1.3算法爆发期(20世纪末):从Dijkstra到A*的飞跃1.4智能优化时代(21世纪至今):从单一算法到融合模型2.路径搜索算法的基本原理:从“盲目搜索”到“智能导航”2.1改进A*算法:无人机路径规划的
- 算法日记 42 day 图论
橘子遇见BUG
算法日记算法图论
今天来看看广度优先搜索,并且写几个题。刷到这里我才想起来,当时第一次面试的时候问的就是这个题,当时大概知道一点思路,但不清楚是图论方面的,更别说写出来了。广度优先搜索(BFS)不同于深度优先,广度优先讲究的是先遍历完一层,在遍历下一层,就这转圈圈,直到遍历完所有。就像这样那么对于广搜的写法来说,不管是队列,栈,或者数组都可以。不过方便遍历,大多使用的是队列,接下来的题目我也使用队列。那么广搜的代码
- 最长递增子序列(LIS)时间复杂度详解
高冷小伙
算法总结算法动态规划数据结构leetcode
问题描述所谓最长递增子序列,就是从一个数组中,从左至右选择若干个数,使得组成的新序列长度最长。解题思路1.转换成最长公共子序列问题待更新~~~~~2.普通动态规划(时间复杂度O(n^2))普通的动态规划思路就是先初始化len[i]为1,然后遍历下标为0~i-1的所有元素,从而对len[i]进行更新;代码如下:voidsolve2(intnum[],intl){intlen[100];memset(
- 力扣——剑指 Offer II 118. 多余的边(图论:并查集)
lllzzzhhh2589
算法leetcode图论算法并查集
思路一开始想简单了,用哈希set存所有元素,出现重复就是多余边,但是连接两个集合的边并不是多余边;因此需要用并查集,如果不在一个集合,就合并,如果在一个集合,这个边就是重复的,更新为答案。初始时,每个节点都属于不同的连通分量。遍历每一条边,判断这条边连接的两个顶点是否属于相同的连通分量。如果两个顶点属于不同的连通分量,则说明在遍历到当前的边之前,这两个顶点之间不连通,因此当前的边不会导致环出现,合
- 【图论】倍增与lca
arin876
图论算法
voiddfs(longu,longfather){dep[u]=dep[father]+1;//只在这里初始化depfor(longi=1;(1=0;i--){//跳到同一个深度if(dep[fa[x][i]]>=dep[y])x=fa[x][i];if(x==y)returnx;}for(inti=20;i>=0;i--){if(fa[x][i]!=fa[y][i]){//一起跳x=fa[x]
- 动态规划:从入门到精通
本文全章节一共一万七千多字,详细介绍动态规划基础与进阶技巧,全篇以代码为主,认真读完理解,你对动态规划的理解一定会有一个质的飞跃。一、动态规划简介:动态规划(DynamicProgramming,简称DP)是一种通过把原问题分解为相对简单的子问题的方式求解复杂问题的方法。它的核心思想是:将复杂问题分解成子问题,保存子问题的解,避免重复计算。动态规划本质上是一种用空间换时间的算法思想:时间优化:避免
- 【动态规划】背包dp
算法阿诺
动态规划动态规划算法
青春没有售价,dp速学一下。参考文章01背包在01背包问题中,每个物品只能放一次进背包。dp[i][j]dp[i][j]dp[i][j]:第i个物品,j容量状态转移公式:f[i][j]=max(f[i−1][j],f[i−1][j−w[i]]+pri[i])f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+pri[i])f[i][j]=max(f[i−1][j],f[i−1
- 【每日一题】补档 CF1875 D. Jellyfish and Mex | 动态规划 | 中等
题目内容原题链接给定一个长度为nnn的数组aaa,每次选择一个元素aia_iai删除,删除的代价为删除后剩余元素的mexmexmex,mex(a)mex(a)mex(a)是指aaa中未出现过的最小的非负数。问将数组aaa删除为空的操作的最小代价。数据范围1≤n≤50001\leqn\leq50001≤n≤50000≤ai≤1090\leqa_i\leq10^90≤ai≤109题解考虑mex(a)m
- 代码随想录算法训练营第五十天|图论part1
xindafu
算法图论c语言
98.所有可达路径题目链接:98.所有可达路径文章讲解:代码随想录输入输出格式:头文件#includecin>>x;(给x,所以是向着x的)cout#includeusingnamespacestd;vector>ans;vectorpath;voiddfs(vector>graph,intstart,intend){if(start==end){//终止条件ans.push_back(path)
- 图书推荐-对初学者有好的算法书籍《Hello算法》
_abab
图书推荐算法
关于本书Hello算法本书是开源免费的数据结构与算法入门教程,采用动画图解和可运行代码示例讲解主要内容涵盖复杂度分析、数据结构(数组/链表/栈/队列/树/图等)、算法(搜索/排序/动态规划等)适合算法初学者建立知识体系,可作为刷题工具库如何使用本书推荐结合动画图解理解重点难点,所有代码提供Java等语言版本包含在线运行功能,可通过GitHub仓库获取源码,各章节设有讨论区学习路线分三阶段:建立基础
- 代码随想录算法训练营Day59 || 图论part 09
傲世尊
算法图论
dijkstra算法(堆优化版):利用小顶堆来减少一层for循环。因为要存储边的权值,邻接表里就需要存pair了。Bellman_ford算法精讲,卡玛网94题:变化在于权值出现了负数,用动态规划思想来维护MinDist数组。核心在于对所有边进行n-1次松弛处理,就可以得出起始点到所有节点的最短路径。图论章节主打一个走马观花属于是。
- 代码随想录算法训练营第五十二天|图论part3
xindafu
算法图论深度优先
101.孤岛的总面积题目链接:101.孤岛的总面积文章讲解:代码随想录思路:与岛屿面积差不多,区别是再dfs的时候,如果碰到越界的,需要用一个符号标记这不是孤岛再continue#include#includeusingnamespacestd;intdir[4][2]={{0,1},{0,-1},{1,0},{-1,0}};voiddfs(vector>graph,vector>&visited
- python中的位运算符
Mophead_Zarathustra
Hot100Mophead的小白刷题笔记leetcodepython
python中的位运算符本文由gpt生成,仅作为本人自用的参考资料使用,不保证完全正确!Python中的位运算是非常常用且高效的操作,尤其在算法题、图论、压缩状态、权限管理等场景中非常有用。1️⃣位运算符总览运算符名称作用示例(a=0b0110,b=0b1011)结果(二进制)&按位与(AND)两位都为 1 ⇒ 1,否则 0a&b0b0010|按位或(OR)只要有一位为 1 ⇒ 1a|b0b111
- LeetCode热题100--121
8Qi8
数据结构与算法leetcode算法贪心算法数据结构动态规划
LeetCode热题100–121.买卖股票的最佳时机题目链接题目类型:贪心、动态规划给定一个数组prices,它的第i个元素prices[i]表示一支给定股票第i天的价格。你只能选择某一天买入这只股票,并选择在未来的某一个不同的日子卖出该股票。设计一个算法来计算你所能获取的最大利润。返回你可以从这笔交易中获取的最大利润。如果你不能获取任何利润,返回0。示例1:输入:[7,1,5,3,6,4]输出
- LeetCode[Math] - #66 Plus One
Cwind
javaLeetCode题解AlgorithmMath
原题链接:#66 Plus One
要求:
给定一个用数字数组表示的非负整数,如num1 = {1, 2, 3, 9}, num2 = {9, 9}等,给这个数加上1。
注意:
1. 数字的较高位存在数组的头上,即num1表示数字1239
2. 每一位(数组中的每个元素)的取值范围为0~9
难度:简单
分析:
题目比较简单,只须从数组
- JQuery中$.ajax()方法参数详解
AILIKES
JavaScriptjsonpjqueryAjaxjson
url: 要求为String类型的参数,(默认为当前页地址)发送请求的地址。
type: 要求为String类型的参数,请求方式(post或get)默认为get。注意其他http请求方法,例如put和 delete也可以使用,但仅部分浏览器支持。
timeout: 要求为Number类型的参数,设置请求超时时间(毫秒)。此设置将覆盖$.ajaxSetup()方法的全局
- JConsole & JVisualVM远程监视Webphere服务器JVM
Kai_Ge
JVisualVMJConsoleWebphere
JConsole是JDK里自带的一个工具,可以监测Java程序运行时所有对象的申请、释放等动作,将内存管理的所有信息进行统计、分析、可视化。我们可以根据这些信息判断程序是否有内存泄漏问题。
使用JConsole工具来分析WAS的JVM问题,需要进行相关的配置。
首先我们看WAS服务器端的配置.
1、登录was控制台https://10.4.119.18
- 自定义annotation
120153216
annotation
Java annotation 自定义注释@interface的用法 一、什么是注释
说起注释,得先提一提什么是元数据(metadata)。所谓元数据就是数据的数据。也就是说,元数据是描述数据的。就象数据表中的字段一样,每个字段描述了这个字段下的数据的含义。而J2SE5.0中提供的注释就是java源代码的元数据,也就是说注释是描述java源
- CentOS 5/6.X 使用 EPEL YUM源
2002wmj
centos
CentOS 6.X 安装使用EPEL YUM源1. 查看操作系统版本[root@node1 ~]# uname -a Linux node1.test.com 2.6.32-358.el6.x86_64 #1 SMP Fri Feb 22 00:31:26 UTC 2013 x86_64 x86_64 x86_64 GNU/Linux [root@node1 ~]#
- 在SQLSERVER中查找缺失和无用的索引SQL
357029540
SQL Server
--缺失的索引
SELECT avg_total_user_cost * avg_user_impact * ( user_scans + user_seeks ) AS PossibleImprovement ,
last_user_seek ,
 
- Spring3 MVC 笔记(二) —json+rest优化
7454103
Spring3 MVC
接上次的 spring mvc 注解的一些详细信息!
其实也是一些个人的学习笔记 呵呵!
- 替换“\”的时候报错Unexpected internal error near index 1 \ ^
adminjun
java“\替换”
发现还是有些东西没有刻子脑子里,,过段时间就没什么概念了,所以贴出来...以免再忘...
在拆分字符串时遇到通过 \ 来拆分,可是用所以想通过转义 \\ 来拆分的时候会报异常
public class Main {
/*
- POJ 1035 Spell checker(哈希表)
aijuans
暴力求解--哈希表
/*
题意:输入字典,然后输入单词,判断字典中是否出现过该单词,或者是否进行删除、添加、替换操作,如果是,则输出对应的字典中的单词
要求按照输入时候的排名输出
题解:建立两个哈希表。一个存储字典和输入字典中单词的排名,一个进行最后输出的判重
*/
#include <iostream>
//#define
using namespace std;
const int HASH =
- 通过原型实现javascript Array的去重、最大值和最小值
ayaoxinchao
JavaScriptarrayprototype
用原型函数(prototype)可以定义一些很方便的自定义函数,实现各种自定义功能。本次主要是实现了Array的去重、获取最大值和最小值。
实现代码如下:
<script type="text/javascript">
Array.prototype.unique = function() {
var a = {};
var le
- UIWebView实现https双向认证请求
bewithme
UIWebViewhttpsObjective-C
什么是HTTPS双向认证我已在先前的博文 ASIHTTPRequest实现https双向认证请求
中有讲述,不理解的读者可以先复习一下。本文是用UIWebView来实现对需要客户端证书验证的服务请求,网上有些文章中有涉及到此内容,但都只言片语,没有讲完全,更没有完整的代码,让人困扰不已。但是此知
- NoSQL数据库之Redis数据库管理(Redis高级应用之事务处理、持久化操作、pub_sub、虚拟内存)
bijian1013
redis数据库NoSQL
3.事务处理
Redis对事务的支持目前不比较简单。Redis只能保证一个client发起的事务中的命令可以连续的执行,而中间不会插入其他client的命令。当一个client在一个连接中发出multi命令时,这个连接会进入一个事务上下文,该连接后续的命令不会立即执行,而是先放到一个队列中,当执行exec命令时,redis会顺序的执行队列中
- 各数据库分页sql备忘
bingyingao
oraclesql分页
ORACLE
下面这个效率很低
SELECT * FROM ( SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_FS_RETURN order by id desc) A ) WHERE RN <20;
下面这个效率很高
SELECT A.*, ROWNUM RN FROM (SELECT * FROM IPAY_RCD_
- 【Scala七】Scala核心一:函数
bit1129
scala
1. 如果函数体只有一行代码,则可以不用写{},比如
def print(x: Int) = println(x)
一行上的多条语句用分号隔开,则只有第一句属于方法体,例如
def printWithValue(x: Int) : String= println(x); "ABC"
上面的代码报错,因为,printWithValue的方法
- 了解GHC的factorial编译过程
bookjovi
haskell
GHC相对其他主流语言的编译器或解释器还是比较复杂的,一部分原因是haskell本身的设计就不易于实现compiler,如lazy特性,static typed,类型推导等。
关于GHC的内部实现有篇文章说的挺好,这里,文中在RTS一节中详细说了haskell的concurrent实现,里面提到了green thread,如果熟悉Go语言的话就会发现,ghc的concurrent实现和Go有点类
- Java-Collections Framework学习与总结-LinkedHashMap
BrokenDreams
LinkedHashMap
前面总结了java.util.HashMap,了解了其内部由散列表实现,每个桶内是一个单向链表。那有没有双向链表的实现呢?双向链表的实现会具备什么特性呢?来看一下HashMap的一个子类——java.util.LinkedHashMap。
- 读《研磨设计模式》-代码笔记-抽象工厂模式-Abstract Factory
bylijinnan
abstract
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* Abstract Factory Pattern
* 抽象工厂模式的目的是:
* 通过在抽象工厂里面定义一组产品接口,方便地切换“产品簇”
* 这些接口是相关或者相依赖的
- 压暗面部高光
cherishLC
PS
方法一、压暗高光&重新着色
当皮肤很油又使用闪光灯时,很容易在面部形成高光区域。
下面讲一下我今天处理高光区域的心得:
皮肤可以分为纹理和色彩两个属性。其中纹理主要由亮度通道(Lab模式的L通道)决定,色彩则由a、b通道确定。
处理思路为在保持高光区域纹理的情况下,对高光区域着色。具体步骤为:降低高光区域的整体的亮度,再进行着色。
如果想简化步骤,可以只进行着色(参看下面的步骤1
- Java VisualVM监控远程JVM
crabdave
visualvm
Java VisualVM监控远程JVM
JDK1.6开始自带的VisualVM就是不错的监控工具.
这个工具就在JAVA_HOME\bin\目录下的jvisualvm.exe, 双击这个文件就能看到界面
通过JMX连接远程机器, 需要经过下面的配置:
1. 修改远程机器JDK配置文件 (我这里远程机器是linux).
 
- Saiku去掉登录模块
daizj
saiku登录olapBI
1、修改applicationContext-saiku-webapp.xml
<security:intercept-url pattern="/rest/**" access="IS_AUTHENTICATED_ANONYMOUSLY" />
<security:intercept-url pattern=&qu
- 浅析 Flex中的Focus
dsjt
htmlFlexFlash
关键字:focus、 setFocus、 IFocusManager、KeyboardEvent
焦点、设置焦点、获得焦点、键盘事件
一、无焦点的困扰——组件监听不到键盘事件
原因:只有获得焦点的组件(确切说是InteractiveObject)才能监听到键盘事件的目标阶段;键盘事件(flash.events.KeyboardEvent)参与冒泡阶段,所以焦点组件的父项(以及它爸
- Yii全局函数使用
dcj3sjt126com
yii
由于YII致力于完美的整合第三方库,它并没有定义任何全局函数。yii中的每一个应用都需要全类别和对象范围。例如,Yii::app()->user;Yii::app()->params['name'];等等。我们可以自行设定全局函数,使得代码看起来更加简洁易用。(原文地址)
我们可以保存在globals.php在protected目录下。然后,在入口脚本index.php的,我们包括在
- 设计模式之单例模式二(解决无序写入的问题)
come_for_dream
单例模式volatile乱序执行双重检验锁
在上篇文章中我们使用了双重检验锁的方式避免懒汉式单例模式下由于多线程造成的实例被多次创建的问题,但是因为由于JVM为了使得处理器内部的运算单元能充分利用,处理器可能会对输入代码进行乱序执行(Out Of Order Execute)优化,处理器会在计算之后将乱序执行的结果进行重组,保证该
- 程序员从初级到高级的蜕变
gcq511120594
框架工作PHPandroidhtml5
软件开发是一个奇怪的行业,市场远远供不应求。这是一个已经存在多年的问题,而且随着时间的流逝,愈演愈烈。
我们严重缺乏能够满足需求的人才。这个行业相当年轻。大多数软件项目是失败的。几乎所有的项目都会超出预算。我们解决问题的最佳指导方针可以归结为——“用一些通用方法去解决问题,当然这些方法常常不管用,于是,唯一能做的就是不断地尝试,逐个看看是否奏效”。
现在我们把淫浸代码时间超过3年的开发人员称为
- Reverse Linked List
hcx2013
list
Reverse a singly linked list.
/**
* Definition for singly-linked list.
* public class ListNode {
* int val;
* ListNode next;
* ListNode(int x) { val = x; }
* }
*/
p
- Spring4.1新特性——数据库集成测试
jinnianshilongnian
spring 4.1
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- C# Ajax上传图片同时生成微缩图(附Demo)
liyonghui160com
1.Ajax无刷新上传图片,详情请阅我的这篇文章。(jquery + c# ashx)
2.C#位图处理 System.Drawing。
3.最新demo支持IE7,IE8,Fir
- Java list三种遍历方法性能比较
pda158
java
从c/c++语言转向java开发,学习java语言list遍历的三种方法,顺便测试各种遍历方法的性能,测试方法为在ArrayList中插入1千万条记录,然后遍历ArrayList,发现了一个奇怪的现象,测试代码例如以下:
package com.hisense.tiger.list;
import java.util.ArrayList;
import java.util.Iterator;
- 300个涵盖IT各方面的免费资源(上)——商业与市场篇
shoothao
seo商业与市场IT资源免费资源
A.网站模板+logo+服务器主机+发票生成
HTML5 UP:响应式的HTML5和CSS3网站模板。
Bootswatch:免费的Bootstrap主题。
Templated:收集了845个免费的CSS和HTML5网站模板。
Wordpress.org|Wordpress.com:可免费创建你的新网站。
Strikingly:关注领域中免费无限的移动优
- localStorage、sessionStorage
uule
localStorage
W3School 例子
HTML5 提供了两种在客户端存储数据的新方法:
localStorage - 没有时间限制的数据存储
sessionStorage - 针对一个 session 的数据存储
之前,这些都是由 cookie 完成的。但是 cookie 不适合大量数据的存储,因为它们由每个对服务器的请求来传递,这使得 cookie 速度很慢而且效率也不