Algorithm: K-Means

K-Means

The K-Means is  an unsupervised learning algorithm which has the input sample data without label.

Sometimes we use the CRM system to manage the relationship between the customer. The concept is clustering

Algorithm: K-Means_第1张图片

 

Algorithm: K-Means_第2张图片

 

Algorithm: K-Means_第3张图片

The application of clustering: 

 Algorithm: K-Means_第4张图片

It can also be used to compress the images

 

The concept of K-mean:

1. rearange each sample to the nearest category by compare the distances.

2. for each category we calculate the center point.

For K = 2

We choose two center point randomly

Algorithm: K-Means_第5张图片

Algorithm: K-Means_第6张图片

We clustering each example to each category respect to the center points.

Then we recalculate the center point by the calculating the mean coordinate of each points of the respect cluster(category.)

Algorithm: K-Means_第7张图片

We use the new center points for clustering.

Algorithm: K-Means_第8张图片

Then we recalculate the center point again.

Algorithm: K-Means_第9张图片

And we do the cluster again:

Algorithm: K-Means_第10张图片

If the new center point is the same as the previous iteration, then we can stop the calculation for converge.

Algorithm: K-Means_第11张图片

 

Python Implementation for K-Mean

# import package
from copy import deepcopy
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt

# set paramter k for K-means
k = 3

# randomize the center point. and save the result into C
X = np.random.random((200, 2)) * 10
C_x = np.random.choice(range(0, int(np.max(X[:, 0]))), size = k, replace = False)
C_y = np.random.choice(range(0, int(np.max(X[:, 1]))), size = k, replace = False)
C = np.array(list(zip(C_x, C_y)), dtype = np.float32)

print("The init center point is :")
print(C)

# plot the center point
plt.scatter(X[:, 0], X[:, 1], c = '#050505', s = 7)
plt.scatter(C[:, 0], C[:, 1], marker = '*', s = 300, c = 'g')
plt.show()

Algorithm: K-Means_第12张图片

 

# store the previous center point
C_old = np.zeros(C.shape)
clusters = np.zeros(len(X))

# calculate the distance
def dist(a, b, ax = 1):
    return np.linalg.norm(a - b, axis = ax)

error = dist(C, C_old, None)
# iteration for K-mean clustering until converge(that is the error = 0)
while error != 0:
    # Assigning each value to its closest cluster
    for i in range(len(X)):
        distances = dist(X[i], C)
        category = np.argmin(distances)
        clusters[i] = category
    
    # We save the old center points
    C_old = deepcopy(C)
    # and calculate the new center points
    for i in range(k):
        points = [X[j] for j in range(len(X)) if clusters[j] == i]
        C[i] = np.mean(points, axis = 0)
    error = dist(C, C_old, None)

# plot the clusters
colors = ['r', 'g', 'b', 'y', 'c', 'm']
fig, ax = plt.subplots()
for i in range(k):
    points = np.array([X[j] for j in range(len(X)) if clusters[j] == i])
    ax.scatter(points[:, 0], points[:, 1], s = 7, c = colors[i])
ax.scatter(C[:, 0], C[:, 1], marker = '*', s = 200, c = '#050505')
plt.show()

Algorithm: K-Means_第13张图片

 

K-Means in detail

 

Algorithm: K-Means_第14张图片

What is the object function os K-mean?

At first ,we don't known the cluster and the center point, how do we define the loss function?

Algorithm: K-Means_第15张图片

we obtain two parameters γ and μ from the object function of K-mean

We can optimize the parameter separately,the approach is set one parameters as known and we optimize the other one.

 

Does the K-means must converge?

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

Alternative Optimization

1)fix {uk} to solve {γik}

calculate the distance between sample to the center points

tag each sample to the specific cluster

2) Fix{γik} to recalculate center{uk}

l=\sum_{k=1}^{k} \sum_{i: i \in \text { cluster} \atop-k}\left\|x_{i}-\mu_{k}\right\|_{2}^{2}

Algorithm: K-Means_第16张图片

It is an optimization problem, the step 1 well let our object function become small.

the step 2 will let our object function become small.

Algorithm: K-Means_第17张图片

Coordinate Descent

EM Algorithm(GMM)

Gaussian Mixer Model

K-Means named hard cluster, GMM - soft cluster

 

The different start center point will result different result

Because we could only obtain the local optima due to the object function of k-mean is not convex

 

How to choose K for K-mean?

Recall the loss function

l=\sum_{i=1}^{N} \sum_{k=1}^{k} \gamma_{i k}\left\|x_{i-} \mu_{k l}\right\|_{2}^{2}

Algorithm: K-Means_第18张图片

base on the change of the L to choose the K

 

Vector Qualization

This method can be used to compress the image data. The core concept is that we use the k-mean to present the similary color pixels

#import packages
from pylab import imread, imshow, figure, show, subplot
import numpy as np
from sklearn.cluster import KMeans
from copy import deepcopy

# read the image data
img = imread('Tulips.jpg')
imshow(img)
show()
# convert three dimension tensor into two dimension matrix
pixel = img.reshape(img.shape[0] * img.shape[1], 3)
pixel_new = deepcopy(pixel)

print (img.shape)

# construct K-means model
model = KMeans(n_clusters = 3)
labels = model.fit_predict(pixel)
palette = model.cluster_centers_

for i in range(len(pixel)):
    pixel_new[i,:] = palette[labels[i]]

# reshow the compressed image
imshow(pixel_new.reshape(img.shape[0], img.shape[1], 3))
show()

 

原始图像,

Algorithm: K-Means_第19张图片

进行三色压缩后的效果(K = 3):

Algorithm: K-Means_第20张图片

进行十六色 (K-means for K = 16)压缩后的效果:

Algorithm: K-Means_第21张图片

你可能感兴趣的:(Machine,Learning)