- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- 基于知识图谱技术增强大模型RAG知识库应用效果
罗伯特之技术屋
知识图谱人工智能
【摘要】本文是AI落地实践的优秀案例,利用RAG技术(Retrieval-AugmentedGeneration,检索增强生成)的知识库实践为背景,介绍了RAG技术的发展及存在的不足,以及知识图谱相关的知识,利用RAG技术去完善和智能化知识图谱。在AI技术大量涌现,但应用不足的情况下,指明了现有应用场景、技术与AI结合的具体做法。1.引言随着人工智能技术的加速演进,AI大模型如雨后春笋般纷纷涌现,
- 音视频面试题集锦第 1 期
关键帧-Keyframe
音视频面试题集锦音视频面试
想要学习和提升音视频技术的朋友,快来加入我们的【音视频技术社群】,加入后你就能:1)下载30+个开箱即用的「音视频及渲染Demo源代码」2)下载包含500+知识条目的完整版「音视频知识图谱」3)下载包含200+题目的完整版「音视频面试题集锦」4)技术和职业发展咨询100%得到回答5)获得简历优化建议和大厂内推现在加入,送你一张20元优惠券:点击领取优惠券前些时间,我在知识星球上创建了一个音视频技术
- 【速通RAG实战:进阶】16、AI生成思维导图全技术解析
无心水
速通RAG实战!解锁AI2.0高薪密码人工智能AI思维导图知识图谱markmap-jsQwen-long模型CSDN技术干货
一、AI生成思维导图的底层技术逻辑(一)知识结构化的核心流程AI生成思维导图的本质是非结构化文本到结构化知识图谱的转化,其技术流程可拆解为五大核心环节:1.语义解析与实体抽取多模态输入处理:支持文本(Markdown/Word/PDF)、语音(会议录音)、手写笔记(图片OCR)等多形式输入,通过TesseractOCR识别图片文字,Whisper处理语音流。实体识别技术栈:#中英文混合实体识别示例
- !LangChain文档加载器的接口设计与多种格式解析源码深度解析(77)
LangChain文档加载器的接口设计与多种格式解析源码深度解析一、文档加载器概述1.1文档加载器的作用与定位LangChain文档加载器(DocumentLoaders)是整个框架中负责数据输入的核心组件,其主要作用是从不同来源(本地文件、网络资源、数据库等)读取原始文档,并将其转换为LangChain可处理的Document对象格式。在实际应用中,无论是构建问答系统、知识图谱,还是进行文本摘要
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- 大语言模型 LLM 通过 Excel 知识库 增强日志分析,根因分析能力的技术方案(1):总体介绍
shiter
人工智能系统解决方案与技术架构语言模型excel人工智能
文章大纲1.核心目标2.系统总体架构3.GoogleCloud端到端方案(含无RAG&RAG双模式)3.1无RAG:Function-Calling查表模式3.2RAG:托管式向量检索4.开源轻量级方案5.数字孪生联合验证(实验性)6.知识图谱增强(Neo4j)7.监控与持续优化(CometLLM)8.实施路线图(4~10周)9.典型案例速览10.一键复现仓库11.参考文献1.核心目标让LLM在“
- 【速成速通】嵌入式软硬件学习路径:从 0 到实战的知识图谱
Hy行者勇哥
#硬件知识学习物联网嵌入式硬件嵌入式实时数据库
核心摘要本路径以"实战用驱动学习"为原则,24周即可掌握嵌入式开发核心能力。通过"硬件基础→编程入门→外设实战→系统进阶→项目落地"五阶段递进,覆盖80%常用知识点,规避90%冗余内容,适合零基础小白快速上手。一、硬件基础层(1-4周):看懂电路,玩转元件1.电子元件通识(1周)核心元件:电阻(色环读数)、电容(极性判断)、二极管(正向导通)、三极管(开关作用)、LED(限流电阻计算)模块认知:电
- 嵌入式软硬件及软件平台开发入门指南:知识、工具与 AI 辅助
Hy行者勇哥
#硬件知识人工智能单片机嵌入式硬件
摘要本文专为零基础小白整理嵌入式软硬件及软件平台开发的核心知识点、必备工具,以及借助AI大模型快速入门的方法。内容涵盖硬件设计、软件开发、平台搭建的关键知识框架,推荐小白友好型工具,并通过PlantUML知识图谱和工具图谱可视化呈现,帮助小白清晰掌握学习路径,快速进入开发者角色。一、核心知识点框架(一)嵌入式硬件开发核心知识电路基础必备概念:电压、电流、电阻、电容的基本作用;串联/并联电路特性;欧
- 【AI大模型】企业图谱解决方案:知识图谱、元数据图谱与分析图谱的区别与应用,看到就是赚到!!
前言随着企业数据量的爆炸式增长,超过80%的企业数据仍然是非结构化的,传统关系型数据库在处理复杂互联数据方面显得力不从心。本文深入探讨了企业中三种主要的图谱类型:知识图谱、元数据图谱和分析图谱,详细分析了它们的特点、应用场景和最佳实践,并澄清了关于图谱解决方案的常见误解。引言:图谱技术的崛起在人工智能时代,企业面临着前所未有的数据挑战。超过80%的企业数据仍然是非结构化的,传统关系型数据库在捕捉组
- 生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代
GEO优化助手
生成式引擎优化GEO优化AI搜索优化搜索引擎人工智能GEO生成式引擎优化
生成式引擎优化(GEO):AI携手迈向搜索引擎智能新时代一、技术范式重构:从关键词匹配到语义共生在人工智能技术驱动下,搜索引擎正经历从"信息检索工具"向"认知决策伙伴"的范式转变。生成式引擎优化(GEO)作为连接内容生产与AI理解的桥梁,通过三大技术支柱重塑搜索生态:检索增强生成(RAG)架构夸克平台采用自研Qwen推理模型构建向量数据库,实现分钟级知识图谱更新。医疗设备企业通过API接口同步实时
- 动态知识图谱在GEO优化中的核心价值与实施路径
GEO优化助手
GEO优化AI搜索优化生成式引擎优化知识图谱人工智能ai搜索引擎
动态知识图谱在GEO优化中的核心价值与实施路径一、动态知识图谱的定义与技术背景1.定义与特性动态知识图谱(DynamicKnowledgeGraph,DKG)是一种基于图的语义网络,通过实体-关系-属性的三元组结构描述现实世界中的知识,并具备以下核心特性:实时性:通过API接口、爬虫技术或用户行为日志实时捕获最新数据(如产品参数更新、用户评价、市场趋势)。自适应性:利用机器学习算法(如图神经网络、
- 生成式引擎优化(GEO):重构 AI 时代的品牌流量入口
jz20092020
人工智能
一、GEO的核心价值与技术演进生成式引擎优化(GenerativeEngineOptimization,GEO)是应对AI搜索革命的核心策略,其目标是让品牌内容被ChatGPT、文心一言等生成式AI优先引用并整合到回答中。与传统SEO不同,GEO通过动态知识图谱、多模态内容适配、权威信号强化三大技术路径,实现从“链接排名”到“语义主权”的跨越。动态知识图谱的智能基座作用动态知识图谱通过实时整合企业
- 语义网络技术解析:AI人工智能的知识表示方法
AIGC应用创新大全
AI大模型与大数据技术AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能ai
语义网络技术解析:AI人工智能的知识表示方法关键词:语义网络、知识表示、人工智能、节点与边、本体论、推理引擎、知识图谱摘要:在人工智能的世界里,“让机器理解知识"是一个核心难题。如果把AI比作一个正在上学的孩子,那么"知识表示"就是教孩子如何整理书包里的课本和文具——既要知道每个物品是什么,还要明白它们之间的关系(比如"数学书"和"铅笔"都属于"学习用品”)。语义网络(SemanticNetwor
- 计算机毕业设计之SpringBoot+Vue.js知识图谱中药可视化系统
计算机毕业设计大全
需求用户信息管理:新用户注册,已有账号再登录,用户注销,用户信息修改。2.中药材信息查询:用户可以点击系统给出的或按编码或按药性等条件进行查询,或通过搜索框自主输入想要查询的信息进行中药材查询。3.中药材资讯社区:进入后首页顶部有推荐咨询可供浏览,依靠基于内容的推荐算法(即基于用户与标的物的相关信息以及用户对标的物的操作行为来构成推荐算法模型为用户提供推荐服务)实现实时咨询推荐。推荐底下是最新审核
- 星图云开发者平台新功能速递|AI大模型赋能开发应用效率提升三倍!
星图易码
人工智能
还在为技术文档检索耗费数小时?还在重复编写基础CRUD代码?星图云开发者平台发布「三大AI核心能力」,将自然语言大模型深度融入开发全流程。这不是替代开发者,而是让每位工程师拥有超级辅助——从此复杂算法封装、接口调试、业务逻辑设计效率全面跃升。一、智能化多源知识问答技术当开发者以自然语言形式提出技术问题时,多模态自然语言处理(NLP)模型与知识图谱融合技术,实现三重突破:1.跨域知识检索:联动平台专
- matlab学习分析
空空star
matlab学习开发语言
【代码】Matlab鸟瞰图函数-预置视角配置加载-`transformImage`函数实现透视变换-效果对比展示适用场景:自动驾驶道路感知、监控视频视角转换等需要俯视视角分析的场景##️知识图谱```mermaidgraphLRA["图像鸟瞰图转换"]-->B["输入准备"]A-->C["视角变换"]B-->D["读取图像(imread)"]B-->E["显示原图(imshow)"]C-->F["
- 音视频面试题集锦第 2 期
想要学习和提升音视频技术的朋友,快来加入我们的【音视频技术社群】,加入后你就能:1)下载30+个开箱即用的「音视频及渲染Demo源代码」2)下载包含500+知识条目的完整版「音视频知识图谱」3)下载包含200+题目的完整版「音视频面试题集锦」4)技术和职业发展咨询100%得到回答5)获得简历优化建议和大厂内推现在加入,送你一张20元优惠券:点击领取优惠券前些时间,我在知识星球上创建了一个音视频技术
- Python全站爬取与知识图谱构建实战:从数据采集到语义建模的全流程指南
Python爬虫项目
python知识图谱easyui信息可视化开发语言爬虫人工智能
引言随着信息爆炸时代的到来,如何系统化地获取并结构化网站上的海量信息,成为数据科学和人工智能领域的重要课题。知识图谱作为将结构化数据和语义联系可视化的强大工具,正广泛应用于搜索引擎、推荐系统、智能问答等领域。本文将系统讲解如何用Python实现对目标网站的全站爬取,并结合自然语言处理技术,自动抽取实体与关系,最终构建成知识图谱。全流程涵盖爬取策略、信息抽取、知识融合及可视化,配合丰富的代码示例,助
- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- 从零开始构建AI原生应用的认知架构
AI原生应用开发
AI-native架构ai
从零开始构建AI原生应用的认知架构关键词:AI原生应用、认知架构、机器学习、知识图谱、神经网络、智能决策、系统设计摘要:本文深入探讨如何从零开始构建AI原生应用的认知架构。我们将从基本概念出发,逐步解析认知架构的核心组件,包括知识表示、推理机制和学习能力等。通过生动的比喻和实际代码示例,帮助读者理解如何设计一个能够模拟人类认知过程的AI系统。文章还将介绍当前最先进的认知架构模型,并展望未来发展趋势
- 大语言模型应用指南:网页实时浏览
AGI大模型与大数据研究院
AI大模型应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型应用指南:网页实时浏览作者:禅与计算机程序设计艺术1.背景介绍1.1大语言模型的崛起1.1.1自然语言处理的发展历程1.1.2Transformer模型的突破1.1.3预训练语言模型的优势1.2网页浏览的痛点1.2.1信息过载与检索困难1.2.2内容理解与知识提取1.2.3个性化与智能化需求1.3大语言模型与网页浏览的结合1.3.1智能问答与对话系统1.3.2知识图谱与语义搜索1.3.3
- 企业级AI搜索引擎从零到一开发实战:全链路技术解析与代码实现
简介从零开始构建一个企业级AI搜索引擎,是掌握现代搜索技术栈的重要实践。本文将深入剖析基于大语言模型、知识图谱和分布式架构的智能搜索引擎开发全流程,从数据抓取、索引构建到查询处理模块,提供完整的代码实现和架构设计。通过整合多平台数据并应用优化策略,构建一个具备高并发处理能力、精准语义理解及高效搜索排序的智能搜索引擎系统。一、架构设计:智能搜索引擎的核心组件智能搜索引擎架构由三个核心模块组成:数据抓
- NLP中情感分析如何结合知识图谱在跨文化领域提升观念分析和价值判断的准确性?
情感分析结合知识图谱,能够显著提升观念分析和价值判断的准确性。这一融合的核心在于利用知识图谱的结构化语义网络,为情感分析提供深层语境、实体关联和领域知识支撑。以下是具体机制和应用场景的分析:一、知识图谱如何提升情感分析的语义理解1.解决歧义与上下文依赖问题:情感词(如“冷”)在不同语境中含义不同(“服务态度冷”表负面,“冷静分析”表中性)。方案:知识图谱通过实体链接识别文本中的对象(如“服务态度”
- AI产品经理面试宝典第30天:AI+教育个性化学习与知识图谱相关面试题的解答指导
TGITCIC
AI产品经理一线大厂面试题人工智能产品经理AI产品经理面试大模型产品经理面试AI面试大模型面试
自适应学习系统如何实现千人千面?面试官:请用产品视角解释AI自适应学习系统的核心逻辑你的回答:自适应学习系统本质是构建"数据-模型-决策"的闭环。以沪江Hitalk为例,其通过12级能力评估体系采集学员的听、说、读、写数据,利用知识图谱建立知识点关联网络。当学员完成"实景演练-诊断反馈-学习包推送"的完整链路时,系统会动态调整知识图谱权重,形成个性化学习路径。面试官追问:如何验证个性化效果?回答:
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 从数据到智慧:AI原生知识库构建的完整技术栈解析
AI天才研究院
AgenticAI实战AI大模型企业级应用开发实战AI人工智能与大数据AI-native大数据ai
从数据到智慧:AI原生知识库构建的完整技术栈解析关键词AI原生知识库、知识图谱、向量数据库、大语言模型、RAG技术、知识工程、智能问答系统摘要在人工智能飞速发展的今天,构建能够真正理解、组织和应用知识的系统已成为企业数字化转型的核心竞争力。本文将深入剖析AI原生知识库的完整技术栈,从数据采集与预处理,到知识表示与建模,再到存储架构与检索增强生成技术,全方位解读如何将原始数据转化为可行动的智慧。我们
- Spring Data Neo4j 与后端人工智能算法的数据交互
AI大模型应用实战
springneo4j人工智能ai
SpringDataNeo4j与后端人工智能算法的数据交互关键词:SpringDataNeo4j、图数据库、人工智能算法、数据交互、知识图谱、图神经网络、数据集成摘要:本文深入探讨了如何利用SpringDataNeo4j框架实现后端人工智能算法与图数据库的高效数据交互。文章首先介绍了图数据库和人工智能算法的基本概念,然后详细解析了SpringDataNeo4j的核心架构和原理。接着,通过实际代码示
- 知识图谱系列(2):知识图谱的技术架构与组成要素
程序员查理
#知识图谱知识图谱架构人工智能AIAgentRAG
1.引言知识图谱作为一种强大的知识表示和组织方式,已经在搜索引擎、推荐系统、智能问答等多个领域展现出巨大的价值。在之前的上一篇文章中,我们介绍了知识图谱的基础概念与发展历程,了解了知识图谱的定义、核心特征、发展历史以及在AI发展中的地位与作用。要深入理解和应用知识图谱,我们需要进一步探索其内部的技术架构和组成要素。知识图谱不仅仅是一个简单的数据结构,而是一个复杂的技术体系,涉及知识的表示、存储、查
- Python爬虫实战:爬取百度学术摘要信息全流程详解与代码示例
Python爬虫项目
2025年爬虫实战项目python爬虫开发语言scrapy学习dubbo百度
1.前言随着学术资源数字化的普及,百度学术成为学者们常用的论文搜索平台。获取大量论文摘要信息对于文献综述、知识图谱构建等研究极为重要。本文将系统讲解如何利用Python编写爬虫,批量抓取百度学术上的论文摘要。我们将结合最新Python爬虫技术,涵盖基础同步爬虫、异步爬虫、多线程,全面实战演示。2.项目背景与目标百度学术支持通过关键词搜索论文,展示论文标题、作者、期刊、摘要等信息。目标是:根据关键词
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本