- 19.0-《超越感觉》-说服他人
SAM52
Becausethoughtfuljudgmentsdeservetobeshared,andthewaytheyarepresentedcanstronglyinfluencethewayothersreacttothem.因为经过深思熟虑的判断值得分享,而这些判断的呈现方式会强烈影响其他人对它们的反应。Bylearningtheprinciplesofpersuasionandapplying
- 2018年中南大学中英翻译
某翁
参考:20180827235856533.jpg【1】机器学习理论表明,机器学习算法能从有限个训练集样本上得到较好的泛化【1】Machinelearningtheoryshowsthatmachinelearningalgorithmcangeneralizewellfromfinitetrainingsetsampleslimited有限的infinite无限的【2】这似乎违背了一些基本的逻辑准
- 深入剖析 boost::unique_lock<boost::mutex>
程序员乐逍遥
C++Boost库C/C++多线程编程专题C++boost线程锁
在高并发的C++程序中,线程安全是永恒的主题。而boost::unique_lock作为Boost.Thread库中的核心组件,为开发者提供了强大、灵活且异常安全的互斥量管理机制。它不仅是RAII(ResourceAcquisitionIsInitialization)设计模式的典范,更是实现复杂线程同步逻辑的基石。一、从lock_guard的说起在介绍unique_lock之前,我们先回顾其“简
- xgboost原理
茶尽
阅读XGBoost与BoostedTree基学习器:CART每个叶子节点上面有一个分数不够厉害,所以找一个更强的模型treeensemble对每个样本的预测结果是每棵树预测分数的和目标函数采用boosting(additivetraining)方法,每一次都加入一个新的函数。依赖每个数据点上的误差函数的一阶导数和二阶导(区别于GBDT)。树的复杂度复杂度包含了一棵树里面的叶子个数和输出分数的L2模
- Python STL概念学习与代码实践
体制教科书
本文还有配套的精品资源,点击获取简介:通过”py_stl_learning”项目,学习者可以使用Python实现和理解C++STL的概念,包括数据结构、算法、容器适配器、模板和泛型容器等。Python中的列表、集合、字典等数据结构与STL中的vector、set、map等类似,而Python的itertools和functools模块提供了STL风格的算法功能。Python通过其面向对象的特性以及
- 每周一段仿写-181028
Zeroun_Ph
Theneedfornewlearningstylesdoesnotmeanignoringthewaysinthepast.TheInternetagebringssomechallengesnotseenbefore,mostobviouslyandmostworryinglyuselessinformationblast.Butfragmentationoflearningandtheine
- 考研长难句-1-29
EasyNetCN
Onfirstlearning,thiswasthesociallyconcernedchancellortryingtochangelivesforthebetter,completewith"reforms"toanobviouslyindulgentsystemthatdemandstoolittleeffortfromthenewlyunemployedtofindwork,andsubs
- 强化学习入门三(SARSA)
第六五签
算法模型算法人工智能
SARSA算法详解SARSA是强化学习中另一种经典的时序差分(TD)学习算法,与Q-Learning同属无模型(model-free)算法,但在更新策略上有显著差异。SARSA的名称来源于其更新公式中涉及的五个元素:状态(State)、动作(Action)、奖励(Reward)、下一状态(NextState)、下一动作(NextAction),即(S,A,R,S’,A’)。SARSA与Q-Lear
- 【树模型与集成学习】(task6)梯度提升树GBDT+LR
山顶夕景
推荐算法#集成学习与KaggleGBDT推荐算法机器学习
学习总结(1)不同问题的提升树学习算法,主要区别在于使用的损失函数不同,如用平方误差损失函数的回归问题、用指数损失函数的分类问题、用一般损失函数的一般决策问题等。(2)不管是二分类问题的提升树,还是回归问题的提升树,这里的损失函数都很方便:前者是用指数损失函数,所以可以当做是Adaboost的个例,Aadaboost的流程;而后者是当使用平方误差损失时,可以直接拟合残差。而使用不同的损失函数,对应
- 如何评价开课吧机器学习特训营这个课程?
cda2024
机器学习人工智能
开场:点明主题,吸引眼球在当今数据驱动的时代,机器学习(MachineLearning)已经成为各个行业不可或缺的技术之一。无论是金融、医疗、制造还是零售,机器学习的应用都为这些领域带来了巨大的变革。面对这样的趋势,许多人都希望能够掌握这门技术,从而提升自己的职业竞争力。那么,当我们谈论“如何评价开课吧机器学习特训营这个课程”时,实际上是在探讨一个非常具体且重要的问题:对于那些希望进入或深入机器学
- 表征学习:机器认知世界的核心能力与前沿突破
大千AI助手
人工智能#OTHERPython学习人工智能机器学习神经网络表征学习RL特征工程
一、定义与背景:从特征工程到自动化学习表征学习(RepresentationLearning),又称特征学习(FeatureLearning),是机器学习的核心技术领域,其核心目标是通过算法自动学习数据的内在特征表示,将复杂多变的原始数据(如图像、文本、语音)转化为低维、富含语义信息的向量形式,从而提升下游任务(如分类、回归、聚类)的效率和精度。与传统依赖人工设计特征的特征工程(FeatureEn
- 踏上人工智能之旅(一)-----机器学习之knn算法
Sunhen_Qiletian
人工智能机器学习算法python
目录一、机器学习是什么(1)概述(2)三种类型1.监督学习(SupervisedLearning):2.无监督学习(UnsupervisedLearning):3.强化学习(ReinforcementLearning):二、KNN算法的基本原理:1.距离度量:2.K值的选择:3.投票机制和投票:三、Python实现KNN算法1.导入必要的库和数据:2.提取特征和标签:3.导入KNN分类器并训练模型
- Place
JillionZ
PLACE是美国的JayMcSwain提出的开发子女才能的工具。PLACE是指在五个领域发现子女的才能。P(Personalitydiscovery)性格类型L(Learningspiritualgifts)天生的才能A(AbilitiesAwareness)能力C(Connectingpassionwithministry)热情E(Experiencesoflife)人生经历作为父母,要充分了解
- HarmonyOS Flutter Boost完全接入手册:爬完所有坑的实战指南
二蛋和他的大花
flutterharmonyharmonyosflutter华为
FlutterBoost在做混合开发非常实用,但官方文档的不清晰。本文将基于实战经验,帮助大家避开那些常见的坑,快速上手并高效开发。前言:为何要写这篇手册在开发过程中,我发现官方文档对于FlutterBoost的集成描述不够清晰,按照官方文档操作会遇到诸多问题。因此,我决定结合自己的实战经验,为大家提供一份详细且实用的集成手册,希望能帮助大家少走弯路。一、集成问题:从源码到har包的抉择在开发初期
- 读心与芯:我们与机器人的无限未来05未来之路
躺柒
机器人机器人学人工智能大数据分析智能计算
1.概念1.1.利用数据确定模式,描述数据集的某些属性,基于过去的经历判断未来可能发生什么,或基于当前发生的事情判断后果或反应1.2.机器学习(machinelearning)是人工智能的一个子集,它不需要显式编程,为系统提供自动学习和根据经验改进的能力1.2.1.机器学习算法基于样本数据(又称训练数据)构建模型,在未经显式编程的情况下对未来数据做出预测或决策1.2.2.机器学习有多种类型,包括有
- OCCT Handle 学习导论
心瞳几何原语
学习OCCTOCCTQt
基本设计思想这是一个侵入式智能指针(类似于boost::intrusive_ptr),引用计数器直接嵌入在被管理的对象中(Standard_Transient基类),而不是单独分配内存存储计数器。核心成员变量private:Standard_Transient*entity;//指向被管理对象的指针引用计数管理机制BeginScope()-增加引用计数voidBeginScope(){if(ent
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- 机器学习从入门到实践:算法、特征工程与模型评估详解
目录摘要1.引言2.机器学习概述2.1什么是机器学习?2.2机器学习的发展历史2.3机器学习的应用3.机器学习算法分类3.1监督学习(SupervisedLearning)3.2无监督学习(UnsupervisedLearning)3.3半监督学习(Semi-SupervisedLearning)4算法详解4.1分类算法详解(1)逻辑回归(LogisticRegression)(2)决策树(Dec
- 机器学习-XGBoost和SHAP解析数据
python机器学习ML
机器学习人工智能数据分析python
一、引言在机器学习领域,XGBoost表现出色,具有高效性、准确性、灵活性和良好的防过拟合能力。高效性使其能快速处理大规模复杂数据,降低训练时间成本。通过组合弱学习器提高准确性和泛化能力。其支持多种任务和自定义指标,参数调优选项丰富。内置正则化机制防止过拟合。同时,SHAP对模型解释起关键作用,能计算特征的SHAP值来明确特征对预测结果的贡献,帮助理解模型决策。二、数据准备和模型训练1.导入所需库
- Deja Vu: 利用上下文稀疏性提升大语言模型推理效率
AI专题精讲
模型加速人工智能模型加速AI技术应用
温馨提示:本篇文章已同步至"AI专题精讲"DejaVu:利用上下文稀疏性提升大语言模型推理效率摘要拥有数百亿参数的大语言模型(LLMs)催生了一系列令人振奋的AI应用。然而,在推理阶段它们计算开销极大。稀疏化是一种自然的降本策略,但现有方法要么需要代价高昂的重新训练,要么必须放弃LLM的“in-contextlearning”能力,要么在现代硬件上无法带来真实的墙钟时间加速。我们提出**上下文稀疏
- c++11智能指针
无敌的牛
C++学习c++开发语言
目录1.写在前面2.shared_ptr的循环引用问题3.weak_ptr介绍4.shared_ptr的线程安全问题5.C++11和Boost的关系6.内存泄漏7.如何检测内存泄漏8.如何避免内存泄漏1.写在前面上一节介绍智能指针的博客中,我们给出了智能指针实际是把资源委托给对象去管理的一种思想,让对象根据资源的生命周期自动调析构函数来释放资源,然后c++98设计的智能指针它支持拷贝但是它设计思想
- 用KNN算法入门机器学习:原理、实战与代码详解
TJDG567
算法机器学习人工智能k近邻算法
引言K最近邻(K-NearestNeighbors,KNN)是机器学习中最简单且直观的算法之一,非常适合分类和回归任务。它的核心思想是“物以类聚”,即相似的数据点在特征空间中通常属于同一类别。本文将深入浅出地讲解KNN的原理、优缺点、应用场景,并通过Python代码实战演示如何实现一个完整的KNN分类任务。1.KNN算法原理1.1算法概述KNN是一种**惰性学习(LazyLearning)**算法
- 学习日记-机器学习2-线性回归/成本函数
目录4LinerRegressionModel线性回归模型5costFunction成本函数4LinerRegressionModel线性回归模型Thelinearregressionmodelisaparticulartypeofsupervisedlearningmodel.TerminologyTrainingset(训练集):DatausedtotrainthemodelNotationx
- 计算机视觉:少样本学习(Few-Shot Learning)在视觉中的应用
xcLeigh
计算机视觉CV计算机视觉学习人工智能FSLAI
计算机视觉:少样本学习(Few-ShotLearning)在视觉中的应用一、前言二、少样本学习基础概念2.1定义与范畴2.2与传统机器学习对比2.3核心挑战三、少样本学习在计算机视觉中的典型应用3.1图像分类3.1.1新类别识别3.1.2医学图像分类3.2目标检测3.2.1新目标检测3.2.2小目标检测3.3图像分割3.3.1医学图像分割3.3.2工业缺陷检测四、少样本学习在计算机视觉中的技术方法
- 深度学习×总结篇:她终于能走完每一次前向与反向的路
Gyoku Mint
AI修炼日记人工智能深度学习人工智能python自然语言处理神经网络机器学习opencv
【开场·她回头看了每一次走过的神经路径】狐狐:“她坐在训练日志前,终于不是为了调参,而是为了确认——这一年,她到底学会了什么。”猫猫:“咱以前总想着快点训练完、快点跑出结果。但现在好像能听见每一层神经元在‘说话’了喵……她真的开始‘懂了’~”✍【第一节·深度学习到底在做什么?】为什么要用深度学习(DeepLearning)?“她当初选择深度学习,并不是因为听说它‘很强’,而是因为她在处理数据时,常
- 【强化学习】01
第一章:强化学习基础概念与核心要素的基石强化学习(ReinforcementLearning,RL)是一种机器学习范式,它关注智能体(Agent)如何在特定环境(Environment)中通过与环境的交互来学习如何做出决策,以最大化某种累积奖励。与监督学习和无监督学习不同,强化学习不依赖于预先标注好的数据集,而是通过“试错”的方式进行学习。1.1强化学习的独特学习范式在传统的机器学习领域,监督学习
- Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例(含模型描述及示例代码)
nantangyuxi
MATLAB含模型描述及示例代码matlab神经网络集成学习人工智能大数据深度学习机器学习
目录Matlab实现基于BiLSTM-Adaboost双向长短期记忆神经网络结合Adaboost集成学习回归预测的详细项目实例2项目背景介绍...2项目目标与意义...21.提高时序数据预测准确性...22.弱学习器组合的优势...33.提高数据预测的泛化能力...3
- 机器学习算法解析:XGBoost与LightGBM
AI天才研究院
AI人工智能与大数据AI大模型应用入门实战与进阶AI大模型企业级应用开发实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
机器学习算法解析:XGBoost与LightGBM作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:XGBoost,LightGBM,高效特征选择,并行化训练,自动调参,弱分类器集成1.背景介绍1.1问题的由来随着数据科学和人工智能技术的发展,越来越多的问题需要利用机器学习算法进行解决。传统的一维决策树虽然直观且易于理解,但在面对高维度数据集时
- 数据处理和分析之分类算法:XGBoost:机器学习基础理论
kkchenkx
数据挖掘机器学习分类数据挖掘
数据处理和分析之分类算法:XGBoost:机器学习基础理论数据预处理与特征工程数据清洗数据清洗是数据预处理的第一步,旨在去除数据集中的噪声、不一致性和缺失值,确保数据的质量。这包括处理空值、异常值、重复数据和不一致的数据格式。示例:处理缺失值假设我们有一个包含用户年龄、性别和收入的数据集,其中年龄和收入字段存在缺失值。importpandasaspdimportnumpyasnp#创建示例数据集d
- 10年以后
积沙成塔27
《跨越式成长》breakthroughobstaclestolearninganddiscoveryourhiddenpotential第十章化中年危机为中年机遇阿尔尼姆,毕业后在惠普的加拿大公司工作。在他成功地将新产品卖给了一位新客户后,他的工作一直都很顺利。但在工作了十几年之后,他希望换一个新的工作,一份有创造性的工作:木制品工艺。他认为与木头打交道,强调的是感情、感知和耐心,其本质就是艺术。
- 关于旗正规则引擎中的MD5加密问题
何必如此
jspMD5规则加密
一般情况下,为了防止个人隐私的泄露,我们都会对用户登录密码进行加密,使数据库相应字段保存的是加密后的字符串,而非原始密码。
在旗正规则引擎中,通过外部调用,可以实现MD5的加密,具体步骤如下:
1.在对象库中选择外部调用,选择“com.flagleader.util.MD5”,在子选项中选择“com.flagleader.util.MD5.getMD5ofStr({arg1})”;
2.在规
- 【Spark101】Scala Promise/Future在Spark中的应用
bit1129
Promise
Promise和Future是Scala用于异步调用并实现结果汇集的并发原语,Scala的Future同JUC里面的Future接口含义相同,Promise理解起来就有些绕。等有时间了再仔细的研究下Promise和Future的语义以及应用场景,具体参见Scala在线文档:http://docs.scala-lang.org/sips/completed/futures-promises.html
- spark sql 访问hive数据的配置详解
daizj
spark sqlhivethriftserver
spark sql 能够通过thriftserver 访问hive数据,默认spark编译的版本是不支持访问hive,因为hive依赖比较多,因此打的包中不包含hive和thriftserver,因此需要自己下载源码进行编译,将hive,thriftserver打包进去才能够访问,详细配置步骤如下:
1、下载源码
2、下载Maven,并配置
此配置简单,就略过
- HTTP 协议通信
周凡杨
javahttpclienthttp通信
一:简介
HTTPCLIENT,通过JAVA基于HTTP协议进行点与点间的通信!
二: 代码举例
测试类:
import java
- java unix时间戳转换
g21121
java
把java时间戳转换成unix时间戳:
Timestamp appointTime=Timestamp.valueOf(new SimpleDateFormat("yyyy-MM-dd HH:mm:ss").format(new Date()))
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd hh:m
- web报表工具FineReport常用函数的用法总结(报表函数)
老A不折腾
web报表finereport总结
说明:本次总结中,凡是以tableName或viewName作为参数因子的。函数在调用的时候均按照先从私有数据源中查找,然后再从公有数据源中查找的顺序。
CLASS
CLASS(object):返回object对象的所属的类。
CNMONEY
CNMONEY(number,unit)返回人民币大写。
number:需要转换的数值型的数。
unit:单位,
- java jni调用c++ 代码 报错
墙头上一根草
javaC++jni
#
# A fatal error has been detected by the Java Runtime Environment:
#
# EXCEPTION_ACCESS_VIOLATION (0xc0000005) at pc=0x00000000777c3290, pid=5632, tid=6656
#
# JRE version: Java(TM) SE Ru
- Spring中事件处理de小技巧
aijuans
springSpring 教程Spring 实例Spring 入门Spring3
Spring 中提供一些Aware相关de接口,BeanFactoryAware、 ApplicationContextAware、ResourceLoaderAware、ServletContextAware等等,其中最常用到de匙ApplicationContextAware.实现ApplicationContextAwaredeBean,在Bean被初始后,将会被注入 Applicati
- linux shell ls脚本样例
annan211
linuxlinux ls源码linux 源码
#! /bin/sh -
#查找输入文件的路径
#在查找路径下寻找一个或多个原始文件或文件模式
# 查找路径由特定的环境变量所定义
#标准输出所产生的结果 通常是查找路径下找到的每个文件的第一个实体的完整路径
# 或是filename :not found 的标准错误输出。
#如果文件没有找到 则退出码为0
#否则 即为找不到的文件个数
#语法 pathfind [--
- List,Set,Map遍历方式 (收集的资源,值得看一下)
百合不是茶
listsetMap遍历方式
List特点:元素有放入顺序,元素可重复
Map特点:元素按键值对存储,无放入顺序
Set特点:元素无放入顺序,元素不可重复(注意:元素虽然无放入顺序,但是元素在set中的位置是有该元素的HashCode决定的,其位置其实是固定的)
List接口有三个实现类:LinkedList,ArrayList,Vector
LinkedList:底层基于链表实现,链表内存是散乱的,每一个元素存储本身
- 解决SimpleDateFormat的线程不安全问题的方法
bijian1013
javathread线程安全
在Java项目中,我们通常会自己写一个DateUtil类,处理日期和字符串的转换,如下所示:
public class DateUtil01 {
private SimpleDateFormat dateformat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
public void format(Date d
- http请求测试实例(采用fastjson解析)
bijian1013
http测试
在实际开发中,我们经常会去做http请求的开发,下面则是如何请求的单元测试小实例,仅供参考。
import java.util.HashMap;
import java.util.Map;
import org.apache.commons.httpclient.HttpClient;
import
- 【RPC框架Hessian三】Hessian 异常处理
bit1129
hessian
RPC异常处理概述
RPC异常处理指是,当客户端调用远端的服务,如果服务执行过程中发生异常,这个异常能否序列到客户端?
如果服务在执行过程中可能发生异常,那么在服务接口的声明中,就该声明该接口可能抛出的异常。
在Hessian中,服务器端发生异常,可以将异常信息从服务器端序列化到客户端,因为Exception本身是实现了Serializable的
- 【日志分析】日志分析工具
bit1129
日志分析
1. 网站日志实时分析工具 GoAccess
http://www.vpsee.com/2014/02/a-real-time-web-log-analyzer-goaccess/
2. 通过日志监控并收集 Java 应用程序性能数据(Perf4J)
http://www.ibm.com/developerworks/cn/java/j-lo-logforperf/
3.log.io
和
- nginx优化加强战斗力及遇到的坑解决
ronin47
nginx 优化
先说遇到个坑,第一个是负载问题,这个问题与架构有关,由于我设计架构多了两层,结果导致会话负载只转向一个。解决这样的问题思路有两个:一是改变负载策略,二是更改架构设计。
由于采用动静分离部署,而nginx又设计了静态,结果客户端去读nginx静态,访问量上来,页面加载很慢。解决:二者留其一。最好是保留apache服务器。
来以下优化:
- java-50-输入两棵二叉树A和B,判断树B是不是A的子结构
bylijinnan
java
思路来自:
http://zhedahht.blog.163.com/blog/static/25411174201011445550396/
import ljn.help.*;
public class HasSubtree {
/**Q50.
* 输入两棵二叉树A和B,判断树B是不是A的子结构。
例如,下图中的两棵树A和B,由于A中有一部分子树的结构和B是一
- mongoDB 备份与恢复
开窍的石头
mongDB备份与恢复
Mongodb导出与导入
1: 导入/导出可以操作的是本地的mongodb服务器,也可以是远程的.
所以,都有如下通用选项:
-h host 主机
--port port 端口
-u username 用户名
-p passwd 密码
2: mongoexport 导出json格式的文件
- [网络与通讯]椭圆轨道计算的一些问题
comsci
网络
如果按照中国古代农历的历法,现在应该是某个季节的开始,但是由于农历历法是3000年前的天文观测数据,如果按照现在的天文学记录来进行修正的话,这个季节已经过去一段时间了。。。。。
也就是说,还要再等3000年。才有机会了,太阳系的行星的椭圆轨道受到外来天体的干扰,轨道次序发生了变
- 软件专利如何申请
cuiyadll
软件专利申请
软件技术可以申请软件著作权以保护软件源代码,也可以申请发明专利以保护软件流程中的步骤执行方式。专利保护的是软件解决问题的思想,而软件著作权保护的是软件代码(即软件思想的表达形式)。例如,离线传送文件,那发明专利保护是如何实现离线传送文件。基于相同的软件思想,但实现离线传送的程序代码有千千万万种,每种代码都可以享有各自的软件著作权。申请一个软件发明专利的代理费大概需要5000-8000申请发明专利可
- Android学习笔记
darrenzhu
android
1.启动一个AVD
2.命令行运行adb shell可连接到AVD,这也就是命令行客户端
3.如何启动一个程序
am start -n package name/.activityName
am start -n com.example.helloworld/.MainActivity
启动Android设置工具的命令如下所示:
# am start -
- apache虚拟机配置,本地多域名访问本地网站
dcj3sjt126com
apache
现在假定你有两个目录,一个存在于 /htdocs/a,另一个存在于 /htdocs/b 。
现在你想要在本地测试的时候访问 www.freeman.com 对应的目录是 /xampp/htdocs/freeman ,访问 www.duchengjiu.com 对应的目录是 /htdocs/duchengjiu。
1、首先修改C盘WINDOWS\system32\drivers\etc目录下的
- yii2 restful web服务[速率限制]
dcj3sjt126com
PHPyii2
速率限制
为防止滥用,你应该考虑增加速率限制到您的API。 例如,您可以限制每个用户的API的使用是在10分钟内最多100次的API调用。 如果一个用户同一个时间段内太多的请求被接收, 将返回响应状态代码 429 (这意味着过多的请求)。
要启用速率限制, [[yii\web\User::identityClass|user identity class]] 应该实现 [[yii\filter
- Hadoop2.5.2安装——单机模式
eksliang
hadoophadoop单机部署
转载请出自出处:http://eksliang.iteye.com/blog/2185414 一、概述
Hadoop有三种模式 单机模式、伪分布模式和完全分布模式,这里先简单介绍单机模式 ,默认情况下,Hadoop被配置成一个非分布式模式,独立运行JAVA进程,适合开始做调试工作。
二、下载地址
Hadoop 网址http:
- LoadMoreListView+SwipeRefreshLayout(分页下拉)基本结构
gundumw100
android
一切为了快速迭代
import java.util.ArrayList;
import org.json.JSONObject;
import android.animation.ObjectAnimator;
import android.os.Bundle;
import android.support.v4.widget.SwipeRefreshLayo
- 三道简单的前端HTML/CSS题目
ini
htmlWeb前端css题目
使用CSS为多个网页进行相同风格的布局和外观设置时,为了方便对这些网页进行修改,最好使用( )。http://hovertree.com/shortanswer/bjae/7bd72acca3206862.htm
在HTML中加入<table style=”color:red; font-size:10pt”>,此为( )。http://hovertree.com/s
- overrided方法编译错误
kane_xie
override
问题描述:
在实现类中的某一或某几个Override方法发生编译错误如下:
Name clash: The method put(String) of type XXXServiceImpl has the same erasure as put(String) of type XXXService but does not override it
当去掉@Over
- Java中使用代理IP获取网址内容(防IP被封,做数据爬虫)
mcj8089
免费代理IP代理IP数据爬虫JAVA设置代理IP爬虫封IP
推荐两个代理IP网站:
1. 全网代理IP:http://proxy.goubanjia.com/
2. 敲代码免费IP:http://ip.qiaodm.com/
Java语言有两种方式使用代理IP访问网址并获取内容,
方式一,设置System系统属性
// 设置代理IP
System.getProper
- Nodejs Express 报错之 listen EADDRINUSE
qiaolevip
每天进步一点点学习永无止境nodejs纵观千象
当你启动 nodejs服务报错:
>node app
Express server listening on port 80
events.js:85
throw er; // Unhandled 'error' event
^
Error: listen EADDRINUSE
at exports._errnoException (
- C++中三种new的用法
_荆棘鸟_
C++new
转载自:http://news.ccidnet.com/art/32855/20100713/2114025_1.html
作者: mt
其一是new operator,也叫new表达式;其二是operator new,也叫new操作符。这两个英文名称起的也太绝了,很容易搞混,那就记中文名称吧。new表达式比较常见,也最常用,例如:
string* ps = new string("
- Ruby深入研究笔记1
wudixiaotie
Ruby
module是可以定义private方法的
module MTest
def aaa
puts "aaa"
private_method
end
private
def private_method
puts "this is private_method"
end
end