- git常用操作及git submodule子模块操作和简单讲解,git源码包下载镜像网站推荐,编译安装git,配置git局域网ssh服务端免密操作
项目多人协作开发一般都要用到版本管理工具并配置代码仓库服务器,这里根据网上资料汇总并实操修改整理出了源码包编译安装git,ssh涉服务端操作免密以及盘点一些git常用操作一:源码包安装git从官网或者镜像网站下到源码包,这里给一个镜像网站,里边找到想要的git-版本号.tar.gzhttps://mirrors.edge.kernel.org/pub/software/scm/git/先校准系统时
- 【图像去噪】论文精读:Noise2Self: Blind Denoising by Self-Supervision(N2S)
十小大
计算机视觉深度学习图像处理图像去噪人工智能论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.RelatedWork3.CalibratingTraditionalModels3.1.Single-Cell3.2
- VL53L0X激光测距传感器资料汇总:您的智能测距解决方案
伍熠逸Peg
VL53L0X激光测距传感器资料汇总:您的智能测距解决方案去发现同类优质开源项目:https://gitcode.com/VL53L0X激光测距传感器资料汇总项目的核心功能/场景:提供VL53L0X传感器集成、调试与开发资源,助力智能测距应用。项目介绍在现代科技领域,精确的测距能力对于自动化、机器人技术以及智能家居等应用至关重要。VL53L0X激光测距传感器资料汇总项目,就是一个为开发者提供全面资
- 【图像去噪】论文精读:Linear Combinations of Patches Are Unreasonably Effective for Single-Image Denoising
十小大
深度学习图像处理计算机视觉图像去噪人工智能
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractI.INTRODUCTIONII.APARAMETRICVIEWOFTWO-STEPNON-LOCALMETHODSFORSINGLE-IMAGEDE
- 全网最全学习Zephyr开发中文教程资料汇总-从基础文档视频到上手实操示例
聆思科技AI芯片
Zephyr保姆级上手教程zephyrAIGC多模态嵌入式硬件iot硬件工程驱动开发
Zephyr作为一款开源且极具灵活性与可扩展性的实时操作系统(RTOS),拥有原生的BLE协议栈、完整的Net协议栈,涵盖TCP/IP与应用层协议,具备出色的实时性,支持硬实时任务调度,确保系统响应的确定性延迟,并且内存占用极小。丰富的通信机制、深度集成的电源管理模式等,也进一步提升了其在嵌入式领域的竞争力。然而,要深入掌握Zephyr开发并非一蹴而就之事。为了方便大家顺利踏上Zephyr开发之路
- 2025中级会计全科网课无偿分享【超全】备考资料 持续更新!
指尖共享
中级会计中级会计备考资料中级会计考试资料中级会计网课资料中会考试资料中会备考
【4】25中级会计https://pan.quark.cn/s/be66dab2219b25中级财管https://pan.quark.cn/s/30766390f0e925中级经济法https://pan.quark.cn/s/500ab5ada9e525中级实务https://pan.quark.cn/s/6c91f3ae6107中级会计全套资料汇总(持续更新中)https://pan.qua
- 【图像去噪】论文精读:Zero-Shot Blind-spot Image Denoising via Implicit Neural Sampling
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction1.1.LearningdenoisingNNwithouttruthimages1.2.Discussionsonbli
- 【图像去噪】论文精读:Tell Me What You See: Text-Guided Real-World Image Denoising
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.BackgroundandRelatedWork3.Method4.Results5.Conclusion前言论文题目
- 【图像去噪】论文精读:Rotation-Equivariant Self-Supervised Method in Image Denoising(AdaReNet)
十小大
深度学习人工智能图像处理计算机视觉图像去噪论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.RelatedWorkandPriorKnowledge2.1.ImageDenoising2.2.RotationE
- 【图像去噪】论文精读:Noise2Fast: Fast Self-Supervised Single Image Blind Denoising(N2F)
十小大
计算机视觉人工智能深度学习图像去噪图像处理论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractMainTheoreticalBackgroundContributionandSignificanceRelatedWorkResultsConcl
- 算法端侧部署/自动驾驶/深度学习/机器学习资料汇总
深度学习技术前沿
深度学习机器学习算法自动驾驶人工智能
计算机视觉与AI行业已接近饱和状态,如何从内卷中脱颖而出,除了极强的自律外,系统的学习方法也很重要,这里给大家推荐了几个计算机视觉和AI方面的社区,对入门学习以及后续进阶非常有用!资料干货满满!江大白号主江大白,目前在国内某大厂任职AI图像视觉总监,10年AI算法开发及管理经验。专注于计算机视觉技术在各业务场景内的产品开发、算法优化、应用落地。目标检测Yolo系列算法,全网500W+阅读量,Yol
- 大话软工笔记—需求分解
田园Coder
软件工程软件工程项目管理
1.需求工程分解需求工程的工程分解分为两个阶段,即需求调研阶段和需求分析阶段,如下图所示:1.1需求调研阶段需求调研阶段主要工作为需求调研和资料汇总工作。需求调研,利用问卷、现状构成图、访谈记录、既存表单的方式收集客户的需求。资料汇总,将调研过程中收集到的资料进行汇总,形成需求调研资料汇总,作为需求分析阶段的分析依据。1.2需求分解阶段需求分析阶段主要工作为需求分析和资料汇总。需求分析,基于需求调
- 2024年Web前端面试题(最全、最详细、持续更新)_web前端面试问题
2401_84438160
程序员前端面试学习
总结面试前要精心做好准备,简历上写的知识点和原理都需要准备好,项目上多想想难点和亮点,这是面试时能和别人不一样的地方。还有就是表现出自己的谦虚好学,以及对于未来持续进阶的规划,企业招人更偏爱稳定的人。万事开头难,但是程序员这一条路坚持几年后发展空间还是非常大的,一切重在坚持。开源分享:【大厂前端面试题解析+核心总结学习笔记+真实项目实战+最新讲解视频】前端面试题汇总JavaScript前端资料汇总
- 系统设计黄金法则:简单之美
guoyanjoy
系统设计黄金法则:简单之美精选已有9345次阅读2012-4-2311:03|个人分类:科研点滴|系统分类:科研笔记|关键词:系统设计黄金法则简单之美【注:本文已发表在2012年第5期《中国计算机学会通讯》。】最近多次看到系统设计与实现的文章与讨论,再加上以前读过的其他资料以及自己的一些实践教训,让我觉得应该把这些资料汇总整理一下。如果要从讨论不同系统的众多资料中总结一条黄金法则的话,那只有一个词
- 【图像去噪】论文精读:SUNet: Swin Transformer UNet for Image Denoising
十小大
transformer深度学习图像去噪图像处理计算机视觉论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言AbstractI.INTRODUCTIONII.RELATEDWORKA.ImageRestorationB.UNetC.SwinTransformerIII.PR
- FPGA 学习资料汇总
蒙跃旖
FPGA学习资料汇总【下载地址】FPGA学习资料汇总这是一个专注于FPGA学习的开源项目,汇集了丰富的学习资料,旨在帮助初学者快速掌握FPGA的核心知识与实践技能。项目内容涵盖文档设计、原理设计和源码设计三大模块,提供了系统的理论文档、深入的工作原理剖析以及多个实用的源码实例。无论你是想了解FPGA的基础概念,还是希望通过动手实践提升编程能力,这些资料都能为你提供清晰的学习路径和参考范例。通过该项
- Acrobat压缩PDF文件的解决方案
master_chenchengg
学习提升能力提升面试宝典技术IT信息化
Acrobat压缩PDF文件的解决方案从“臃肿”到“精简”:我的PDF瘦身之旅探索压缩奥秘:揭开Acrobat的秘密武器环境准备:确保最佳压缩效果的小贴士实战演练:手把手教你轻松压缩PDF高级技巧:深入挖掘更多可能性安全无忧:保护敏感信息不丢失社区智慧:共同探索更佳方案从“臃肿”到“精简”:我的PDF瘦身之旅记得那次,我正在准备一份非常重要的项目提案,需要将所有资料汇总成一个PDF文件发送给客户。
- 视频编解码相关资料汇总
cg101202
图形硬件加速视频编解码Windows图形linux
相关概念window图形和显示相关概念GraphicsAPIsinWindows自Windows早期以来,图形编程的主要API就是图形设备接口(GDI)。此API设计用于处理大量2D输出设备,它构成了Windows用户界面体验的基础。DirectDraw和Direct3D作为替代API引入,以支持全屏游戏和3D渲染,作为当时现有硬件的扩展。与GDI的相互作用是复杂的。这种设计限制了传统GDI元素与
- 双目立体匹配博客&资料汇总
@兄弟情深@
双目立体视觉计算机视觉
网上对于双目立体匹配算法的学习资料有很多,本文旨在汇总网上优质的资源,并总结学习路线,从传统的SGM、PatchMatch、AD-Census,到近年来的各种深度学习双目立体匹配网络,双目立体匹配算法不断升级,并且一直是学术界研究的热门,值得探索!1、基础理论双目立体匹配有以下几个关键问题:一是如何对双目设备进行标定,只要标定后进行图像极线矫正,才能成为一个理想的双目系统;二是立体匹配算法,经典的
- 2024年五一数学建模竞赛ABC题思路资料汇总贴
DS数模
数学建模五一赛五一数学建模竞赛数据分析全国大学生数学建模竞赛
下文包含:2024五一赛(五一数学建模竞赛)思路解析、五一赛参赛时间及规则信息说明、好用的数模技巧及如何备战数学建模竞赛C君将会第一时间发布选题建议、所有题目的思路解析、相关代码、参考文献、参考论文等多项资料,帮助大家取得好成绩。2024年五一赛将于5月1日上午10时正式开始1最新更新详细内容请看文末很高兴,以前的回答帮助了上万支队伍,下面展示了之前的回答:2023MathorCup高校数学建模挑
- 【图像去噪】论文复现:掩码后的自然图像预训练模型用于单噪声图像推理!Zero-shot算法MPI的Pytorch源码复现,跑通源码,图文保姆级教程,框架结构与代码对应,注释详细!
十小大
pytorchpython图像去噪深度学习图像处理计算机视觉底层视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通MPI源码,训练和测试图文展示,详细步骤;MPI框架结构梳理和拆解,结构示意图和代码实现对应,注
- NVIDIA GTC 开发者社区Watch Party资料汇总
扫地的小何尚
NVIDIAGPUlinuxAI算法
NVIDIAGTC开发者社区WatchParty资料汇总以下是所有涉及到的工具中文解读汇总,希望可以帮到各位:1.CUDA编程模型开发者指南和最新功能解析专栏2.NVIDIAWarp:高性能GPU模拟与图形计算的Python框架3.NVIDIAcuDF:GPU加速的数据处理库详解4.NVIDIAcuML:GPU加速的机器学习库详解5.NVIDIAcuFFT详解:从入门到高级应用6.NVIDIAcu
- 【图像去噪】论文精读:CVPR 2025 | DnLUT: Ultra-Efficient Color Image Denoising via Channel-Aware Lookup Tables
十小大
图像去噪深度学习计算机视觉人工智能图像处理论文阅读论文笔记
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言Abstract1.Introduction2.Relatedworks2.1.ColorImagedenoising2.2.ReplacingCNNwithLUT3
- 38份DeepSeek核心资料汇总|可下载
航锦234
人工智能pdf
资料链接:https://pan.quark.cn/s/b469ed4018ff为了方便大家查找和使用,我们对之前发布过的DeepSeek系列学习资料进行了分类和汇总。内容包括但不限于清北浙DeepSeek课件资料汇总manus学习资料DeepSeek实操变现指南DeepSeek本地部署教学等等点击最上方链接即可保存下载~
- 【图像去噪】论文复现:TPAMI 2025!全面提升单图像去噪泛化性!像素级零样本去噪方法Pixel2Pixel的Pytorch源码复现,跑通源码,修改各种报错,框架详解,注释详细!
十小大
pytorch人工智能python深度学习计算机视觉图像处理图像去噪
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通Pixel2Pixel全部源码,包含数据集准备、制作像素库(PixelBank)、训练和推理等,
- 2025最新 DeepSeek学习资料汇总
啾啾859
pdf
「DeepSeek资料合集」链接:https://pan.quark.cn/s/ad280bf95fb7「清华北大-Deepseek使用手册」链接:https://pan.quark.cn/s/98782f7d61dc「清华大学Deepseek整理)1-6版本链接:https://pan.quark.cn/s/72194e32428a资源链接:https://pan.quark.cn/s/3d40
- 【图像去噪】基础知识之加噪 | 给图像加噪的若干种方式,包括加高斯白噪声(AWGN)、泊松-高斯噪声、模拟真实噪声(SIDD、DND)等
十小大
人工智能计算机视觉深度学习图像处理图像去噪pythonpytorch
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言加高斯噪声(AWGN)在numpy上加在Tensor上加完整代码加其他噪声(模拟真实世界的噪声)加随机散粒噪声和真实噪声(Possion-Gaussian)加SIDD
- 【图像去噪】论文复现:真实噪声转高斯噪声,提升高斯噪声训练的模型性能!Learning to Translate Noise的Pytorch源码复现,跑通流程,框架结构和损失函数详解!
十小大
pytorch人工智能python图像去噪图像处理深度学习计算机视觉
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)完整代码和训练好的模型权重文件下载链接见本文底部,订阅专栏免费获取!本文亮点:跑通LearningtoTranslateNoise源码,包含基于BasicSR的训练和测试代码,得
- 【图像去噪】基础知识之BasicSR | BasicSR库的用法详解,包含各部分代码功能详细介绍(全代码注释),自己改进创新需要修改的位置等
十小大
图像去噪imagedenoising图像处理深度学习人工智能pytorchpython
请先看【专栏介绍文章】:【图像去噪(ImageDenoising)】关于【图像去噪】专栏的相关说明,包含适配人群、专栏简介、专栏亮点、阅读方法、定价理由、品质承诺、关于更新、去噪概述、文章目录、资料汇总、问题汇总(更新中)文章目录前言1.BasicSR项目结构与开发方法2.dataset3.arch4.model4.1创建模型4.2模型基类4.3图像恢复模型5.utils6.train7.test
- 【DeepSeek从入门到精通】清华大学出品300页DeepSeek教程,最新完整版。
AI小魔女
学习自然语言处理AIGCAI写作python
DeepSeek资料链接:https://pan.quark.cn/s/862e3c3fcdbf今年,DeepSeek热度居高不下,从硅谷巨头到国内BAT,从MIT实验室到清华智算中心,DeepSeek正以王者之姿横扫AI圈!年后清华大学团队相继推出了DeepSeek相关的5份学习教程,帮助用户高效学习AI,从入门到精通,300页资料汇总!完整版资料已放在开头,大家自行领取。
- 怎么样才能成为专业的程序员?
cocos2d-x小菜
编程PHP
如何要想成为一名专业的程序员?仅仅会写代码是不够的。从团队合作去解决问题到版本控制,你还得具备其他关键技能的工具包。当我们询问相关的专业开发人员,那些必备的关键技能都是什么的时候,下面是我们了解到的情况。
关于如何学习代码,各种声音很多,然后很多人就被误导为成为专业开发人员懂得一门编程语言就够了?!呵呵,就像其他工作一样,光会一个技能那是远远不够的。如果你想要成为
- java web开发 高并发处理
BreakingBad
javaWeb并发开发处理高
java处理高并发高负载类网站中数据库的设计方法(java教程,java处理大量数据,java高负载数据) 一:高并发高负载类网站关注点之数据库 没错,首先是数据库,这是大多数应用所面临的首个SPOF。尤其是Web2.0的应用,数据库的响应是首先要解决的。 一般来说MySQL是最常用的,可能最初是一个mysql主机,当数据增加到100万以上,那么,MySQL的效能急剧下降。常用的优化措施是M-S(
- mysql批量更新
ekian
mysql
mysql更新优化:
一版的更新的话都是采用update set的方式,但是如果需要批量更新的话,只能for循环的执行更新。或者采用executeBatch的方式,执行更新。无论哪种方式,性能都不见得多好。
三千多条的更新,需要3分多钟。
查询了批量更新的优化,有说replace into的方式,即:
replace into tableName(id,status) values
- 微软BI(3)
18289753290
微软BI SSIS
1)
Q:该列违反了完整性约束错误;已获得 OLE DB 记录。源:“Microsoft SQL Server Native Client 11.0” Hresult: 0x80004005 说明:“不能将值 NULL 插入列 'FZCHID',表 'JRB_EnterpriseCredit.dbo.QYFZCH';列不允许有 Null 值。INSERT 失败。”。
A:一般这类问题的存在是
- Java中的List
g21121
java
List是一个有序的 collection(也称为序列)。此接口的用户可以对列表中每个元素的插入位置进行精确地控制。用户可以根据元素的整数索引(在列表中的位置)访问元素,并搜索列表中的元素。
与 set 不同,列表通常允许重复
- 读书笔记
永夜-极光
读书笔记
1. K是一家加工厂,需要采购原材料,有A,B,C,D 4家供应商,其中A给出的价格最低,性价比最高,那么假如你是这家企业的采购经理,你会如何决策?
传统决策: A:100%订单 B,C,D:0%
&nbs
- centos 安装 Codeblocks
随便小屋
codeblocks
1.安装gcc,需要c和c++两部分,默认安装下,CentOS不安装编译器的,在终端输入以下命令即可yum install gccyum install gcc-c++
2.安装gtk2-devel,因为默认已经安装了正式产品需要的支持库,但是没有安装开发所需要的文档.yum install gtk2*
3. 安装wxGTK
yum search w
- 23种设计模式的形象比喻
aijuans
设计模式
1、ABSTRACT FACTORY—追MM少不了请吃饭了,麦当劳的鸡翅和肯德基的鸡翅都是MM爱吃的东西,虽然口味有所不同,但不管你带MM去麦当劳或肯德基,只管向服务员说“来四个鸡翅”就行了。麦当劳和肯德基就是生产鸡翅的Factory 工厂模式:客户类和工厂类分开。消费者任何时候需要某种产品,只需向工厂请求即可。消费者无须修改就可以接纳新产品。缺点是当产品修改时,工厂类也要做相应的修改。如:
- 开发管理 CheckLists
aoyouzi
开发管理 CheckLists
开发管理 CheckLists(23) -使项目组度过完整的生命周期
开发管理 CheckLists(22) -组织项目资源
开发管理 CheckLists(21) -控制项目的范围开发管理 CheckLists(20) -项目利益相关者责任开发管理 CheckLists(19) -选择合适的团队成员开发管理 CheckLists(18) -敏捷开发 Scrum Master 工作开发管理 C
- js实现切换
百合不是茶
JavaScript栏目切换
js主要功能之一就是实现页面的特效,窗体的切换可以减少页面的大小,被门户网站大量应用思路:
1,先将要显示的设置为display:bisible 否则设为none
2,设置栏目的id ,js获取栏目的id,如果id为Null就设置为显示
3,判断js获取的id名字;再设置是否显示
代码实现:
html代码:
<di
- 周鸿祎在360新员工入职培训上的讲话
bijian1013
感悟项目管理人生职场
这篇文章也是最近偶尔看到的,考虑到原博客发布者可能将其删除等原因,也更方便个人查找,特将原文拷贝再发布的。“学东西是为自己的,不要整天以混的姿态来跟公司博弈,就算是混,我觉得你要是能在混的时间里,收获一些别的有利于人生发展的东西,也是不错的,看你怎么把握了”,看了之后,对这句话记忆犹新。 &
- 前端Web开发的页面效果
Bill_chen
htmlWebMicrosoft
1.IE6下png图片的透明显示:
<img src="图片地址" border="0" style="Filter.Alpha(Opacity)=数值(100),style=数值(3)"/>
或在<head></head>间加一段JS代码让透明png图片正常显示。
2.<li>标
- 【JVM五】老年代垃圾回收:并发标记清理GC(CMS GC)
bit1129
垃圾回收
CMS概述
并发标记清理垃圾回收(Concurrent Mark and Sweep GC)算法的主要目标是在GC过程中,减少暂停用户线程的次数以及在不得不暂停用户线程的请夸功能,尽可能短的暂停用户线程的时间。这对于交互式应用,比如web应用来说,是非常重要的。
CMS垃圾回收针对新生代和老年代采用不同的策略。相比同吞吐量垃圾回收,它要复杂的多。吞吐量垃圾回收在执
- Struts2技术总结
白糖_
struts2
必备jar文件
早在struts2.0.*的时候,struts2的必备jar包需要如下几个:
commons-logging-*.jar Apache旗下commons项目的log日志包
freemarker-*.jar  
- Jquery easyui layout应用注意事项
bozch
jquery浏览器easyuilayout
在jquery easyui中提供了easyui-layout布局,他的布局比较局限,类似java中GUI的border布局。下面对其使用注意事项作简要介绍:
如果在现有的工程中前台界面均应用了jquery easyui,那么在布局的时候最好应用jquery eaysui的layout布局,否则在表单页面(编辑、查看、添加等等)在不同的浏览器会出
- java-拷贝特殊链表:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
bylijinnan
java
public class CopySpecialLinkedList {
/**
* 题目:有一个特殊的链表,其中每个节点不但有指向下一个节点的指针pNext,还有一个指向链表中任意节点的指针pRand,如何拷贝这个特殊链表?
拷贝pNext指针非常容易,所以题目的难点是如何拷贝pRand指针。
假设原来链表为A1 -> A2 ->... -> An,新拷贝
- color
Chen.H
JavaScripthtmlcss
<!DOCTYPE HTML PUBLIC "-//W3C//DTD HTML 4.01 Transitional//EN" "http://www.w3.org/TR/html4/loose.dtd"> <HTML> <HEAD>&nbs
- [信息与战争]移动通讯与网络
comsci
网络
两个坚持:手机的电池必须可以取下来
光纤不能够入户,只能够到楼宇
建议大家找这本书看看:<&
- oracle flashback query(闪回查询)
daizj
oracleflashback queryflashback table
在Oracle 10g中,Flash back家族分为以下成员:
Flashback Database
Flashback Drop
Flashback Table
Flashback Query(分Flashback Query,Flashback Version Query,Flashback Transaction Query)
下面介绍一下Flashback Drop 和Flas
- zeus持久层DAO单元测试
deng520159
单元测试
zeus代码测试正紧张进行中,但由于工作比较忙,但速度比较慢.现在已经完成读写分离单元测试了,现在把几种情况单元测试的例子发出来,希望有人能进出意见,让它走下去.
本文是zeus的dao单元测试:
1.单元测试直接上代码
package com.dengliang.zeus.webdemo.test;
import org.junit.Test;
import o
- C语言学习三printf函数和scanf函数学习
dcj3sjt126com
cprintfscanflanguage
printf函数
/*
2013年3月10日20:42:32
地点:北京潘家园
功能:
目的:
测试%x %X %#x %#X的用法
*/
# include <stdio.h>
int main(void)
{
printf("哈哈!\n"); // \n表示换行
int i = 10;
printf
- 那你为什么小时候不好好读书?
dcj3sjt126com
life
dady, 我今天捡到了十块钱, 不过我还给那个人了
good girl! 那个人有没有和你讲thank you啊
没有啦....他拉我的耳朵我才把钱还给他的, 他哪里会和我讲thank you
爸爸, 如果地上有一张5块一张10块你拿哪一张呢....
当然是拿十块的咯...
爸爸你很笨的, 你不会两张都拿
爸爸为什么上个月那个人来跟你讨钱, 你告诉他没
- iptables开放端口
Fanyucai
linuxiptables端口
1,找到配置文件
vi /etc/sysconfig/iptables
2,添加端口开放,增加一行,开放18081端口
-A INPUT -m state --state NEW -m tcp -p tcp --dport 18081 -j ACCEPT
3,保存
ESC
:wq!
4,重启服务
service iptables
- Ehcache(05)——缓存的查询
234390216
排序ehcache统计query
缓存的查询
目录
1. 使Cache可查询
1.1 基于Xml配置
1.2 基于代码的配置
2 指定可搜索的属性
2.1 可查询属性类型
2.2 &
- 通过hashset找到数组中重复的元素
jackyrong
hashset
如何在hashset中快速找到重复的元素呢?方法很多,下面是其中一个办法:
int[] array = {1,1,2,3,4,5,6,7,8,8};
Set<Integer> set = new HashSet<Integer>();
for(int i = 0
- 使用ajax和window.history.pushState无刷新改变页面内容和地址栏URL
lanrikey
history
后退时关闭当前页面
<script type="text/javascript">
jQuery(document).ready(function ($) {
if (window.history && window.history.pushState) {
- 应用程序的通信成本
netkiller.github.com
虚拟机应用服务器陈景峰netkillerneo
应用程序的通信成本
什么是通信
一个程序中两个以上功能相互传递信号或数据叫做通信。
什么是成本
这是是指时间成本与空间成本。 时间就是传递数据所花费的时间。空间是指传递过程耗费容量大小。
都有哪些通信方式
全局变量
线程间通信
共享内存
共享文件
管道
Socket
硬件(串口,USB) 等等
全局变量
全局变量是成本最低通信方法,通过设置
- 一维数组与二维数组的声明与定义
恋洁e生
二维数组一维数组定义声明初始化
/** * */ package test20111005; /** * @author FlyingFire * @date:2011-11-18 上午04:33:36 * @author :代码整理 * @introduce :一维数组与二维数组的初始化 *summary: */ public c
- Spring Mybatis独立事务配置
toknowme
mybatis
在项目中有很多地方会使用到独立事务,下面以获取主键为例
(1)修改配置文件spring-mybatis.xml <!-- 开启事务支持 --> <tx:annotation-driven transaction-manager="transactionManager" /> &n
- 更新Anadroid SDK Tooks之后,Eclipse提示No update were found
xp9802
eclipse
使用Android SDK Manager 更新了Anadroid SDK Tooks 之后,
打开eclipse提示 This Android SDK requires Android Developer Toolkit version 23.0.0 or above, 点击Check for Updates
检测一会后提示 No update were found