tensorflow学习之三:数据的分批添加和准确率的预估

import os
os.environ['TF_CPP_MIN_LOG_LEVEL'] = '2'
import tensorflow as tf
import numpy as np
from tensorflow.examples.tutorials.mnist import  input_data

#加载数据
mnist = input_data.read_data_sets('MNIST',one_hot=True)
#加上每个批次的大小
batch_size  = 100
#计算一共有多少个批次
n_batch = mnist.train.num_examples // batch_size

#placeholder  数据的维度是784,最后变成10个分类
x = tf.placeholder(tf.float32,[None,784])
y = tf.placeholder(tf.float32,[None,10])


#定义一层的简单网络
w = tf.Variable(tf.random_normal([784,10]))
b = tf.Variable(tf.zeros([10]))
predict = tf.nn.softmax(tf.add(tf.matmul(x,w),b))

#损失函数
loss = tf.reduce_mean(tf.square(y - predict))

#优化函数
train=  tf.train.GradientDescentOptimizer(0.1).minimize(loss)


#准确率计算
correct_prediction = tf.equal(tf.argmax(y,1),tf.argmax(predict,1))
acc = tf.reduce_mean(tf.cast(correct_prediction,tf.float32))


init = tf.global_variables_initializer()

with tf.Session() as sess:
    sess.run(init)
    for epoch in range(21):
        for batch in range(n_batch):
            batch_xs,batch_ys = mnist.train.next_batch(batch_size)
            sess.run(train,feed_dict={x:batch_xs,y:batch_ys})
        accc = sess.run(acc,feed_dict={x:mnist.test.images,y:mnist.test.labels})
        print("epoch    " + str(epoch) + ": acc   "+ str(accc))


 
  
运行的结果
 
 

你可能感兴趣的:(tensorflow)