- 推荐与广告区别
ActionReaction
TheDifferencebetweenaRecommendationandanAdAquickthoughtregardingFacebook’snewSocialAdsplatform.Arecommendationissomethingyougetfromsomeonewhoknowssomethingaboutyou.Theyhaveseenanitemofinterestandthoug
- 【PDF】常见纸张字体大小设置指南 / Common Paper Size Font Guidelines
hmywillstronger
pdf
常见纸张字体大小设置指南/CommonPaperSizeFontGuidelines纸张尺寸基础数据/PaperSizeReferenceA4纸张(210×297mm)字体建议/A4PaperFontRecommendations正文阅读用途/BodyTextUsage表格和图表/TablesandChartsA3纸张(297×420mm)字体建议/A3PaperFontRecommendatio
- Knowledge Graph Contrastive Learning for Recommendation(KGCL)阅读笔记
forever0827
知识图谱笔记人工智能推荐算法
现有知识图谱(KG)的稀疏性和噪声使得项目-实体依赖关系偏离了反映其真实特征,从而显着放大了噪声效应,阻碍了用户偏好的准确表示。为了填补这一研究空白,作者设计了一个通用的知识图对比学习框架(KGCL),该框架可以减轻知识图增强推荐系统的信息噪声。论文链接:https://doi.org/10.1145/3477495.3532009代码链接:https://github.com/yuh-yang/
- 冷启动推荐:系统性综述
jony0917
人工智能
原论文链接:Cold-StartRecommendationtowardstheEraofLargeLanguageModels(LLMs):AComprehensiveSurveyandRoadmapCONTENTFEATURES数据不完整学习(Data-IncompleteLearning)稳健协同训练(RobustCo-Training)稳健泛化(Robustgeneralization):
- PHP PSR(PHP Standards Recommendations)介绍
come11234
phpandroid开发语言
PHPPSR(PHPStandardsRecommendations)是PHP社区制定的一系列标准化规范,旨在统一PHP代码的编写方式、接口设计和开发实践,以提高代码的可读性、可维护性和互操作性。以下是核心PSR标准的解读和具体使用方法:一、核心PSR标准概览标准主题核心内容PSR-1基础编码规范文件格式、类命名、方法命名、常量命名等基础规则PSR-12扩展编码风格替代PSR-2,详细规定代码缩进
- vscode配置
wbxxxxxxx
项目搭建vuevscodeide编辑器
一般来说前端项目,.vscod文件夹下包含几个文件1.extensions.json扩展配置文件,设置推荐的插件,可以在拓展中筛选出这些推荐的插件{"recommendations":["插件标识符"]} //插件标识符可以在插件的信息中找到2.settings.jsonvscode编辑器和插件的配置注意:项目中的setting.json会覆盖vscode中的全局配置。3.还有一些代码片段也
- Youtube推荐系统论文-《Deep Neural Networks for YouTube Recommendations》-简单总结
inner-01
推荐算法系统架构深度学习
文章目录前言一、背景介绍二、整体架构三、召回层四、排序层前言今天要学习的是一篇关于推荐系统的经典的论文,它是由google在2016年发表的,应用场景是youtube上的视频推荐,然后这个应该是当时大厂把深度学习应用到推荐系统这个方向上的非常早期的工作,虽然现在来看它的模型非常简单,但是其中涉及到了非常多的工程细节,是值得我们去学习和借鉴的。一、背景介绍众所周知YouTube是一个全球最大的视频分
- 【论文阅读】Attentive Collaborative Filtering:
hongjianMa
#多模态-论文阅读论文阅读推荐系统推荐算法多模态自注意力机制深度学习
AttentiveCollaborativeFiltering:MultimediaRecommendationwithItem-andComponent-LevelAttentionAttentiveCollaborativeFiltering(ACF)、隐式反馈推荐、注意力机制、贝叶斯个性化排序标题翻译:注意力协同过滤:基于项目和组件级注意力的多媒体推荐原文地址:点这里摘要多媒体内容正主导着当
- AI大模型在搜索推荐系统中的应用前景
AI大模型应用之禅
DeepSeekR1&AI大模型与大数据javapythonjavascriptkotlingolang架构人工智能
1.背景介绍1.1问题由来随着互联网技术的迅猛发展,搜索推荐系统(SearchandRecommendationSystem)已经成为各大平台、搜索引擎的核心竞争力之一。传统的搜索推荐系统基于统计学方法,通过用户行为数据进行推荐,这种方法虽然效果稳定,但灵活性不足,难以应对复杂多变的用户需求。人工智能,特别是深度学习技术的发展,为搜索推荐系统带来了新的突破。基于大模型的推荐技术能够直接从用户输入的
- 亚马逊云科技-15分钟分析构建者新内容GenAI
taibaili2023
AWS
亚马逊云科技-15分钟分析构建者新内容GenAI关键字:[yt,AmazonRedshift,DataQualityRecommendations,DataIngestionAutomation,SensitiveDataMasking,InteractiveSparkAnalytics,UnifiedDataDiscovery]本文字数:400,阅读完需:2分钟导读演讲者在”AmazonClou
- 综述:大语言 RDRec:如何利用大语言模型做推荐系统模型在信息抽取上的应用_rdrec 模型
AI大模型-搬运工
语言模型人工智能自然语言处理AI大模型产品经理大模型大语言模型
推荐系统RDRec:RationaleDistillationforLLM-basedRecommendation大型语言模型(LLM)通过文本提示实现用户与物品间的有效语义推理,其推荐模型备受瞩目。然而,多数方法未深入探究交互背后的逻辑,如用户偏好与物品属性,这限制了LLM在推荐领域的推理深度。本文创新性地提出了原理蒸馏推荐器(RDRec),一种精简模型,旨在汲取更大语言模型(LM)生成的深层原
- 基于协同过滤算法的旅游推荐系统设计与实现
usp1994
旅游协同过滤算法算法推荐系统
点我下载==>基于协同过滤算法的旅游推荐系统设计与实现https://download.csdn.net/download/No_Name_Cao_Ni_Mei/88496060基于协同过滤算法的旅游推荐系统设计与实现DesignandImplementationofaTravelRecommendationSystembasedonCollaborativeFilteringAlgorithm目
- 基于机器学习的股票预测及股票推荐系统的设计与实现
usp1994
机器学习人工智能
基于机器学习的股票预测及股票推荐系统的设计与实现DesignandImplementationofaMachineLearning-basedStockPredictionandStockRecommendationSystem完整下载链接:基于机器学习的股票预测及股票推荐系统的设计与实现文章目录基于机器学习的股票预测及股票推荐系统的设计与实现摘要第一章绪论1.1研究背景1.2研究目的与意义1.3
- Self-Attentive Sequential Recommendation论文阅读笔记
调包调参侠
推荐系统学习深度学习机器学习神经网络算法
SASRec论文阅读笔记论文标题:Self-AttentiveSequentialRecommendation发表于:2018ICDM作者:Wang-ChengKang,JulianMcAuley论文代码:https://github.com/pmixer/SASRec.pytorch论文地址:https://arxiv.org/pdf/1808.09781v1.pdf摘要顺序动态是许多现代推荐系
- 【3GPP】AT command 简介
ShiinaKaze
3GPPAT命令2G3G4G
ScopeATcommand用于TerminalEquipment(TE)通过TerminalAdaptor(TA)控制MobileTermination(MT)的功能和网络服务。命令前缀+C是ITU-TRecommendationV.250中为DigitalCellular保留的。这种抽象结构的多种实现:1.TA、MT与TE作为三个独立实体;2.TA集成在MT设备内部,TE作为独立实体;3.TA
- 从0开始使用Docker搭建Spark集群
吃鱼的羊
SPARKHadoop
https://www.jianshu.com/p/ee210190224f?utm_campaign=maleskine&utm_content=note&utm_medium=seo_notes&utm_source=recommendation最近在学习大数据技术,朋友叫我直接学习Spark,英雄不问出处,菜鸟不问对错,于是我就开始了Spark学习。为什么要在Docker上搭建Spark集群
- 【文献阅读分享】PAP-REC:个性化自动提示生成框架✨
Sheakan
推荐系统论文阅读总结人工智能推荐系统
标题期刊年份PAP-REC:PersonalizedAutomaticPromptforRecommendationLanguageModelACMTransactionsonInformationSystems(TOIS)2024研究背景在信息爆炸的时代,我们每天都要面对海量的数据和选择,这时候推荐系统就像我们的智能小助手,帮助我们在茫茫信息海洋中找到真正需要的资源。但是,传统的推荐系统模型大多
- NeuralCF 模型:神经网络协同过滤模型
Lewis@
神经网络人工智能深度学习
实验和完整代码完整代码实现和jupyter运行:https://github.com/Myolive-Lin/RecSys--deep-learning-recommendation-system/tree/main引言NeuralCF模型由新加坡国立大学研究人员于2017年提出,其核心思想在于将传统协同过滤方法与深度学习技术相结合,从而更为有效地捕捉用户与物品之间的复杂交互关系。该模型利用神经网
- 基于python的音乐推荐系统设计与实现
wu_fei_yu
python开发语言
点我完整下载:基于python的音乐推荐系统设计与实现.docx基于python的音乐推荐系统设计与实现DesignandImplementationofaMusicRecommendationSystembasedonPython目录目录2摘要3关键词3
- Sass报错: Using / for division is deprecated
Pinia_0819
vuesass前端css
运行项目时报以下错误::Using/fordivisionisdeprecatedandwillberemovedinDartSass2.0.0.Recommendation:math.div($px,$screenWidth)Moreinfoandautomatedmigrator:https://sass-lang.com/d/slash-div官方还很贴心做了一个一键迁移的工具,执行下面两行
- 【Python百日进阶-Web开发-Peewee】Day295 - 查询示例(四)聚合1
岳涛@心馨电脑
Dashpython前端dash
文章目录14.6聚合14.6.1计算设施数量Countthenumberoffacilities14.6.2计算昂贵设施的数量Countthenumberofexpensivefacilities14.6.3计算每个成员提出的建议数量。Countthenumberofrecommendationseachmembermakes.14.6.4列出每个设施预订的总空位Listthetotalslots
- 基于图的推荐算法(12):Handling Information Loss of Graph Neural Networks for Session-based Recommendation
阿瑟_TJRS
前言KDD2020,针对基于会话推荐任务提出的GNN方法对已有的GNN方法的缺陷进行分析并做出改进主要针对lossysessionencoding和ineffectivelong-rangedependencycapturing两个问题:基于GNN的方法存在损失部分序列信息的问题,主要是在session转换为图以及消息传播过程中的排列无关(permutation-invariant)的聚合过程中造
- ITU-T V-Series Recommendations
技术无疆
Othercompressionstandardsprotocolsinterfacenetworkalgorithm
TheITU-TV-SeriesRecommendationsonDatacommunicationoverthetelephonenetworkspecifytheprotocolsthatgovernapprovedmodemcommunicationstandardsandinterfaces.[1]Note:thebisandtersuffixesareITU-Tstandarddesig
- Make It a Chorus: Knowledge- and Time-aware Item Modeling for Sequential Recommendation sigir 20
农场主
机器学习
介绍的博客作者讲解摘要传统的推荐系统主要针对固有的、长期的用户偏好进行建模,而动态的用户需求也是非常重要的。通常,历史消费会影响用户对其关系项的需求。例如,用户倾向于一起购买互补产品(iPhone和AirPods),而不是替代产品(Powerbeats和AirPods),尽管替代购买的产品仍然迎合了他/她的偏好。为了更好地模拟历史序列的影响,以前的研究引入了项目关系的语义来捕捉用户的推荐需求。然而
- 多模态推荐系统综述
凤凰AI
推荐系统论文阅读人工智能数据挖掘机器学习
推荐系统(RS)已经成为在线服务不可或缺的工具。它们集成了各种深度学习技术,可以根据标识符和属性信息对用户偏好进行建模。随着短视频、新闻等多媒体服务的出现,在推荐的同时了解这些内容变得至关重要。此外,多模态特征也有助于缓解RS中的数据稀疏问题。因此,多模态推荐系统(multimodalrecommendationsSystem,MRS)近年来受到了学术界和业界的广泛关注。在本文中,我们将主要从技术
- DS Wannabe之5-AM Project: DS 30day int prep day10
wendyponcho
python机器学习
Q1.WhatisaRecommenderSystem?Arecommendersystemistodaywidelydeployedinmultiplefieldslikemovierecommendations,musicpreferences,socialtags,researcharticles,searchqueriesandsoon.Therecommendersystemsworka
- PSR
CaptainRoy
PSR(PHPStandardsRecommendation)是PHP框架之间标准的代码风格PSR-1:基本的代码风格PSR-2:严格的代码风格PSR-3:日志记录器接口PSR-4:自动加载PSR-1必须把PHP代码放在标签中类和方法名必须使用驼峰法常量名称必须全是大写字母,可以使用下划线把单词隔开PSR-2必须贯彻PSR-1代码风格使用四个空格缩进文件必须使用unix风格的换行符,最后要有一个空
- 因果推断推荐系统工具箱 - CFF(二)
processor4d
文章名称【CIKM-2021】【BeijingKeyLaboratoryofBigDataManagementandAnalysisMethods-AntGroup】CounterfactualReview-basedRecommendation核心要点文章旨在解决现有基于评论的推荐系统中存在的评论稀疏和不平衡的问题,提出在feature-aware的推荐场景下,利用反事实样本提升模型性能。作者通
- 论文笔记:相似感知的多模态假新闻检测
图学习的小张
论文笔记论文阅读python
整理了RecSys2020ProgressiveLayeredExtraction:ANovelMulti-TaskLearningModelforPersonalizedRecommendations)论文的阅读笔记背景模型实验论文地址:SAFE背景 在此之前,对利用新闻文章中文本信息和视觉信息之间的关系(相似性)的关注较少。这种相似性有助于识别虚假新闻,例如,虚假新闻也许会试图使用不相关的图
- Happier Hour —— A book recommendation
诚威_lol_中大努力中
storyandfeelinglife
2hourisenough,lesswillbecruel/stressful,morewillfeelemptinessSpendtimedoingsportsFeeltheawesomenessoflifeornature.....Thisbookisaboutthefeelingsoftime.Whenthingshaverelationswiththepsychology,theycanb
- 书其实只有三类
西蜀石兰
类
一个人一辈子其实只读三种书,知识类、技能类、修心类。
知识类的书可以让我们活得更明白。类似十万个为什么这种书籍,我一直不太乐意去读,因为单纯的知识是没法做事的,就像知道地球转速是多少一样(我肯定不知道),这种所谓的知识,除非用到,普通人掌握了完全是一种负担,维基百科能找到的东西,为什么去记忆?
知识类的书,每个方面都涉及些,让自己显得不那么没文化,仅此而已。社会认为的学识渊博,肯定不是站在
- 《TCP/IP 详解,卷1:协议》学习笔记、吐槽及其他
bylijinnan
tcp
《TCP/IP 详解,卷1:协议》是经典,但不适合初学者。它更像是一本字典,适合学过网络的人温习和查阅一些记不清的概念。
这本书,我看的版本是机械工业出版社、范建华等译的。这本书在我看来,翻译得一般,甚至有明显的错误。如果英文熟练,看原版更好:
http://pcvr.nl/tcpip/
下面是我的一些笔记,包括我看书时有疑问的地方,也有对该书的吐槽,有不对的地方请指正:
1.
- Linux—— 静态IP跟动态IP设置
eksliang
linuxIP
一.在终端输入
vi /etc/sysconfig/network-scripts/ifcfg-eth0
静态ip模板如下:
DEVICE="eth0" #网卡名称
BOOTPROTO="static" #静态IP(必须)
HWADDR="00:0C:29:B5:65:CA" #网卡mac地址
IPV6INIT=&q
- Informatica update strategy transformation
18289753290
更新策略组件: 标记你的数据进入target里面做什么操作,一般会和lookup配合使用,有时候用0,1,1代表 forward rejected rows被选中,rejected row是输出在错误文件里,不想看到reject输出,将错误输出到文件,因为有时候数据库原因导致某些column不能update,reject就会output到错误文件里面供查看,在workflow的
- 使用Scrapy时出现虽然队列里有很多Request但是却不下载,造成假死状态
酷的飞上天空
request
现象就是:
程序运行一段时间,可能是几十分钟或者几个小时,然后后台日志里面就不出现下载页面的信息,一直显示上一分钟抓取了0个网页的信息。
刚开始已经猜到是某些下载线程没有正常执行回调方法引起程序一直以为线程还未下载完成,但是水平有限研究源码未果。
经过不停的google终于发现一个有价值的信息,是给twisted提出的一个bugfix
连接地址如下http://twistedmatrix.
- 利用预测分析技术来进行辅助医疗
蓝儿唯美
医疗
2014年,克利夫兰诊所(Cleveland Clinic)想要更有效地控制其手术中心做膝关节置换手术的费用。整个系统每年大约进行2600例此类手术,所以,即使降低很少一部分成本,都可以为诊 所和病人节约大量的资金。为了找到适合的解决方案,供应商将视野投向了预测分析技术和工具,但其分析团队还必须花时间向医生解释基于数据的治疗方案意味着 什么。
克利夫兰诊所负责企业信息管理和分析的医疗
- java 线程(一):基础篇
DavidIsOK
java多线程线程
&nbs
- Tomcat服务器框架之Servlet开发分析
aijuans
servlet
最近使用Tomcat做web服务器,使用Servlet技术做开发时,对Tomcat的框架的简易分析:
疑问: 为什么我们在继承HttpServlet类之后,覆盖doGet(HttpServletRequest req, HttpServetResponse rep)方法后,该方法会自动被Tomcat服务器调用,doGet方法的参数有谁传递过来?怎样传递?
分析之我见: doGet方法的
- 揭秘玖富的粉丝营销之谜 与小米粉丝社区类似
aoyouzi
揭秘玖富的粉丝营销之谜
玖富旗下悟空理财凭借着一个微信公众号上线当天成交量即破百万,第七天成交量单日破了1000万;第23天时,累计成交量超1个亿……至今成立不到10个月,粉丝已经超过500万,月交易额突破10亿,而玖富平台目前的总用户数也已经超过了1800万,位居P2P平台第一位。很多互联网金融创业者慕名前来学习效仿,但是却鲜有成功者,玖富的粉丝营销对外至今仍然是个谜。
近日,一直坚持微信粉丝营销
- Java web的会话跟踪技术
百合不是茶
url会话Cookie会话Seession会话Java Web隐藏域会话
会话跟踪主要是用在用户页面点击不同的页面时,需要用到的技术点
会话:多次请求与响应的过程
1,url地址传递参数,实现页面跟踪技术
格式:传一个参数的
url?名=值
传两个参数的
url?名=值 &名=值
关键代码
- web.xml之Servlet配置
bijian1013
javaweb.xmlServlet配置
定义:
<servlet>
<servlet-name>myservlet</servlet-name>
<servlet-class>com.myapp.controller.MyFirstServlet</servlet-class>
<init-param>
<param-name>
- 利用svnsync实现SVN同步备份
sunjing
SVN同步E000022svnsync镜像
1. 在备份SVN服务器上建立版本库
svnadmin create test
2. 创建pre-revprop-change文件
cd test/hooks/
cp pre-revprop-change.tmpl pre-revprop-change
3. 修改pre-revprop-
- 【分布式数据一致性三】MongoDB读写一致性
bit1129
mongodb
本系列文章结合MongoDB,探讨分布式数据库的数据一致性,这个系列文章包括:
数据一致性概述与CAP
最终一致性(Eventually Consistency)
网络分裂(Network Partition)问题
多数据中心(Multi Data Center)
多个写者(Multi Writer)最终一致性
一致性图表(Consistency Chart)
数据
- Anychart图表组件-Flash图转IMG普通图的方法
白糖_
Flash
问题背景:项目使用的是Anychart图表组件,渲染出来的图是Flash的,往往一个页面有时候会有多个flash图,而需求是让我们做一个打印预览和打印功能,让多个Flash图在一个页面上打印出来。
那么我们打印预览的思路是获取页面的body元素,然后在打印预览界面通过$("body").append(html)的形式显示预览效果,结果让人大跌眼镜:Flash是
- Window 80端口被占用 WHY?
bozch
端口占用window
平时在启动一些可能使用80端口软件的时候,会提示80端口已经被其他软件占用,那一般又会有那些软件占用这些端口呢?
下面坐下总结:
1、web服务器是最经常见的占用80端口的,例如:tomcat , apache , IIS , Php等等;
2
- 编程之美-数组的最大值和最小值-分治法(两种形式)
bylijinnan
编程之美
import java.util.Arrays;
public class MinMaxInArray {
/**
* 编程之美 数组的最大值和最小值 分治法
* 两种形式
*/
public static void main(String[] args) {
int[] t={11,23,34,4,6,7,8,1,2,23};
int[]
- Perl正则表达式
chenbowen00
正则表达式perl
首先我们应该知道 Perl 程序中,正则表达式有三种存在形式,他们分别是:
匹配:m/<regexp>;/ (还可以简写为 /<regexp>;/ ,略去 m)
替换:s/<pattern>;/<replacement>;/
转化:tr/<pattern>;/<replacemnt>;
- [宇宙与天文]行星议会是否具有本行星大气层以外的权力呢?
comsci
举个例子: 地球,地球上由200多个国家选举出一个代表地球联合体的议会,那么现在地球联合体遇到一个问题,地球这颗星球上面的矿产资源快要采掘完了....那么地球议会全体投票,一致通过一项带有法律性质的议案,既批准地球上的国家用各种技术手段在地球以外开采矿产资源和其它资源........
&
- Oracle Profile 使用详解
daizj
oracleprofile资源限制
Oracle Profile 使用详解 转
一、目的:
Oracle系统中的profile可以用来对用户所能使用的数据库资源进行限制,使用Create Profile命令创建一个Profile,用它来实现对数据库资源的限制使用,如果把该profile分配给用户,则该用户所能使用的数据库资源都在该profile的限制之内。
二、条件:
创建profile必须要有CREATE PROFIL
- How HipChat Stores And Indexes Billions Of Messages Using ElasticSearch & Redis
dengkane
elasticsearchLucene
This article is from an interview with Zuhaib Siddique, a production engineer at HipChat, makers of group chat and IM for teams.
HipChat started in an unusual space, one you might not
- 循环小示例,菲波拉契序列,循环解一元二次方程以及switch示例程序
dcj3sjt126com
c算法
# include <stdio.h>
int main(void)
{
int n;
int i;
int f1, f2, f3;
f1 = 1;
f2 = 1;
printf("请输入您需要求的想的序列:");
scanf("%d", &n);
for (i=3; i<n; i
- macbook的lamp环境
dcj3sjt126com
lamp
sudo vim /etc/apache2/httpd.conf
/Library/WebServer/Documents
是默认的网站根目录
重启Mac上的Apache服务
这个命令很早以前就查过了,但是每次使用的时候还是要在网上查:
停止服务:sudo /usr/sbin/apachectl stop
开启服务:s
- java ArrayList源码 下
shuizhaosi888
ArrayList源码
版本 jdk-7u71-windows-x64
JavaSE7 ArrayList源码上:http://flyouwith.iteye.com/blog/2166890
/**
* 从这个列表中移除所有c中包含元素
*/
public boolean removeAll(Collection<?> c) {
- Spring Security(08)——intercept-url配置
234390216
Spring Securityintercept-url访问权限访问协议请求方法
intercept-url配置
目录
1.1 指定拦截的url
1.2 指定访问权限
1.3 指定访问协议
1.4 指定请求方法
1.1 &n
- Linux环境下的oracle安装
jayung
oracle
linux系统下的oracle安装
本文档是Linux(redhat6.x、centos6.x、redhat7.x) 64位操作系统安装Oracle 11g(Oracle Database 11g Enterprise Edition Release 11.2.0.4.0 - 64bit Production),本文基于各种网络资料精心整理而成,共享给有需要的朋友。如有问题可联系:QQ:52-7
- hotspot虚拟机
leichenlei
javaHotSpotjvm虚拟机文档
JVM参数
http://docs.oracle.com/javase/6/docs/technotes/guides/vm/index.html
JVM工具
http://docs.oracle.com/javase/6/docs/technotes/tools/index.html
JVM垃圾回收
http://www.oracle.com
- 读《Node.js项目实践:构建可扩展的Web应用》 ——引编程慢慢变成系统化的“砌砖活”
noaighost
Webnode.js
读《Node.js项目实践:构建可扩展的Web应用》
——引编程慢慢变成系统化的“砌砖活”
眼里的Node.JS
初初接触node是一年前的事,那时候年少不更事。还在纠结什么语言可以编写出牛逼的程序,想必每个码农都会经历这个月经性的问题:微信用什么语言写的?facebook为什么推荐系统这么智能,用什么语言写的?dota2的外挂这么牛逼,用什么语言写的?……用什么语言写这句话,困扰人也是阻碍
- 快速开发Android应用
rensanning
android
Android应用开发过程中,经常会遇到很多常见的类似问题,解决这些问题需要花时间,其实很多问题已经有了成熟的解决方案,比如很多第三方的开源lib,参考
Android Libraries 和
Android UI/UX Libraries。
编码越少,Bug越少,效率自然会高。
但可能由于 根本没听说过、听说过但没用过、特殊原因不能用、自己已经有了解决方案等等原因,这些成熟的解决
- 理解Java中的弱引用
tomcat_oracle
java工作面试
不久之前,我
面试了一些求职Java高级开发工程师的应聘者。我常常会面试他们说,“你能给我介绍一些Java中得弱引用吗?”,如果面试者这样说,“嗯,是不是垃圾回收有关的?”,我就会基本满意了,我并不期待回答是一篇诘究本末的论文描述。 然而事与愿违,我很吃惊的发现,在将近20多个有着平均5年开发经验和高学历背景的应聘者中,居然只有两个人知道弱引用的存在,但是在这两个人之中只有一个人真正了
- 标签输出html标签" target="_blank">关于标签输出html标签
xshdch
jsp
http://back-888888.iteye.com/blog/1181202
关于<c:out value=""/>标签的使用,其中有一个属性是escapeXml默认是true(将html标签当做转移字符,直接显示不在浏览器上面进行解析),当设置escapeXml属性值为false的时候就是不过滤xml,这样就能在浏览器上解析html标签,
&nb