- 2018-11-21没把手的门
raindrop1219
没把手的门当清晨的第一缕阳光照在窗上你是否还在梦乡?当清脆的歌声在枝头嘹亮你是否已在前行?当落日的余霞铺满菩提树下你是否向过去挥手告别?当月光洒向黑暗的角落你是否心明静几?你矗立在那,没有把手等待那颗虔诚的心
- 60、深度学习的发展历程和应用领域【用Python进行AI数据分析进阶教程】
理工男大辉郎
python人工智能数据分析机器学习深度学习
用Python进行AI数据分析进阶教程60:深度学习的发展历程和应用领域关键词:深度学习、神经网络、卷积神经网络、自然语言处理、自动驾驶摘要:本文概述了深度学习的发展历程及其应用领域。从20世纪40年代的神经网络起源,到80年代反向传播算法的提出,再到21世纪初因数据爆炸和计算能力提升而复兴,深度学习经历了多个重要阶段。如今,各种深度学习模型如卷积神经网络(CNN)、循环神经网络(RNN)及其变体
- pytorch.反向传播算法和优化器
LyaJpunov
#pytorchpytorch算法深度学习
在训练神经网络时,最常见的算法就是反向传播为了支持反向传播,pytorch有一个内置的分类引擎,叫做TORCH.AUTOGRADimporttorchx=torch.ones(5)#inputtensory=torch.zeros(3)#expectedoutputw=torch.randn(5,3,requires_grad=True)#如果需要反向传播就打开这个参数b=torch.randn(
- 20250108-实验+神经网络(实现见绑定资源)
陈晨辰熟稳重
实验报告神经网络人工智能深度学习
实验3.神经网络与反向传播算法(实现见绑定资源)3.1计算图:复合函数的计算图实验要求1:基于numpy实现(y1,y2)=f(x1,x2,x3)(y_1,y_2)=f(x_1,x_2,x_3)(y1,y2)=f(x1,x2,x3)的反向传播算法(不允许使用自动微分),程序应能够正确计算函数的雅克比矩阵.实验要求2:基于pytorch实现(y1,y2)=f(x1,x2,x3)(y_1,y_2)=f
- 微算法科技技术突破:用于前馈神经网络的量子算法技术助力神经网络变革
MicroTech2025
量子计算算法神经网络
随着量子计算和机器学习的迅猛发展,企业界正逐步迈向融合这两大领域的新时代。在这一背景下,微算法科技(NASDAQ:MLGO)成功研发出一套用于前馈神经网络的量子算法,突破了传统神经网络在训练和评估中的性能瓶颈。这一创新性的量子算法以经典的前馈和反向传播算法为基础,借助量子计算的强大算力,极大提升了网络训练和评估效率,并带来了对过拟合的天然抗性。前馈神经网络是深度学习的核心架构,广泛应用于图像分类、
- educoder机器学习 --- 神经网络
木右加木
educoder机器学习神经网络
第1关:神经网络基本概念1、C第2关:激活函数#encoding=utf8defrelu(x):'''x:负无穷到正无穷的实数'''#*********Begin*********#ifx<=0:return0else:returnx#*********End*********#第3关:反向传播算法#encoding=utf8importosimportpandasaspdfromsklearn.
- 【AI】AI大模型发展史:从理论探索到技术爆发
不想当程序汪的第N天
AI人工智能
一、早期探索阶段—理论与技术奠基1.1符号主义与连接主义的博弈20世纪50-70年代,符号主义AI主导研究方向,通过专家系统模拟人类逻辑推理,但受限于计算能力和数据规模。80年代连接主义AI兴起,以神经网络为核心,反向传播算法的提出为深度学习奠定基础。1.2神经网络初步实践1980年:卷积神经网络(CNN)雏形诞生1998年:LeNet-5模型成功应用于手写数字识别,成为首个商用深度学习模型关键局
- 误差的回响:反向传播算法与神经网络的惊天逆转
田园Coder
人工智能科普人工智能科普
当专家系统在20世纪80年代初期大放异彩,成为人工智能实用化的耀眼明星时,另一股曾经被宣判“死刑”的力量——连接主义(神经网络)——正在寒冬的冻土下悄然涌动,孕育着一场惊天动地的复苏。马文·明斯基和西摩·帕尔特在1969年《感知机》专著中那精准而冷酷的理论批判,如同沉重的封印,将多层神经网络的研究禁锢了近二十年。他们指出的核心死结——缺乏有效算法来训练具有隐藏层的网络——仿佛一道无法逾越的天堑。单
- 深入理解AI人工智能深度学习的原理架构
AI学长带你学AI
人工智能深度学习ai
深入理解AI人工智能深度学习的原理架构关键词:人工智能、深度学习、原理架构、神经网络、数学模型摘要:本文旨在深入剖析AI人工智能深度学习的原理架构。首先介绍了深度学习的背景,包括其目的、预期读者、文档结构和相关术语。接着阐述了深度学习的核心概念,如神经网络、激活函数等,并通过示意图和流程图进行直观展示。详细讲解了核心算法原理,如反向传播算法,并给出Python代码示例。同时,介绍了深度学习中的数学
- 【深度学习-Day 17】神经网络的心脏:反向传播算法全解析
吴师兄大模型
深度学习入门到精通深度学习神经网络算法人工智能pythonpytorchLLM
Langchain系列文章目录01-玩转LangChain:从模型调用到Prompt模板与输出解析的完整指南02-玩转LangChainMemory模块:四种记忆类型详解及应用场景全覆盖03-全面掌握LangChain:从核心链条构建到动态任务分配的实战指南04-玩转LangChain:从文档加载到高效问答系统构建的全程实战05-玩转LangChain:深度评估问答系统的三种高效方法(示例生成、手
- 05、反向传播算法(Backpropagation)是如何解决了多层神经网络的参数优化问题的?
季截
数学之美算法神经网络人工智能
反向传播算法(Backpropagation,简称BP算法)是深度学习的核心技术之一,其通过高效计算梯度并结合梯度下降法,解决了多层神经网络参数优化的计算复杂度难题。以下从原理、数学基础、执行步骤及关键价值四个维度,详细解析其工作机制:一、反向传播的核心目标:高效计算参数梯度在多层神经网络中,参数优化的本质是通过调整权重矩阵W和偏置向量b,使损失函数L最小化。而梯度下降法需要计算损失对所有参数的梯
- Pytorch 学习 - 6.pytorch 张量数学-自动求取梯度
chenchihwen
pytorch学习人工智能
先掌握pytorch,学好pytorch,才能学好人工智能autogradtorch.autograd.backwardtorch.autograd.backward是PyTorch中用于自动计算张量(tensor)梯度的函数。在深度学习和神经网络训练中,梯度计算是反向传播算法的核心部分,它允许我们更新模型的权重以最小化损失函数。下面是对torch.autograd.backward函数的详细解释
- 深度学习入门:从零搭建你的第一个神经网络
layneyao
ai深度学习神经网络人工智能
深度学习入门:从零搭建你的第一个神经网络系统化学习人工智能网站(收藏):https://www.captainbed.cn/flu文章目录深度学习入门:从零搭建你的第一个神经网络摘要引言第一章:神经网络基础原理1.1神经元模型1.2反向传播算法1.3激活函数对比第二章:开发环境搭建指南2.1硬件要求2.2软件环境2.2.1Anaconda配置2.2.2PyTorch安装2.2.3TensorFlo
- 【Python深度学习(第二版)(2)】深度学习之前:机器学习简史
roman_日积跬步-终至千里
#python深度学习(第二版)深度学习机器学习人工智能
文章目录一.深度学习的起源1.概率建模--机器学习分类器2.早期神经网络--反向传播算法的转折3.核方法--忽略神经网络4.决策树、随机森林和梯度提升机5.神经网络替代svm与决策树二.深度学习与机器学习有何不同可以这样说,当前工业界所使用的大部分机器学习算法不是深度学习算法。深度学习不一定总是解决问题的正确工具:有时没有足够的数据,深度学习不适用;有时用其他算法可以更好地解决问题。如果第一次接触
- 反向传播算法——矩阵形式递推公式——ReLU传递函数
phoenix@Capricornus
模式识别与机器学习算法矩阵机器学习
总结反向传播算法。来源于https://udlbook.github.io/udlbook/,我不明白初始不从x0\boldsymbol{x}_0x0开始,而是从z0\boldsymbol{z}_0z0开始,不知道怎么想的。考虑一个深度神经网络g[xi,ϕ]g[\boldsymbol{x}_i,\boldsymbol{\phi}]g[xi,ϕ],它接受输入xi\boldsymbol{x}_ixi,
- 深入解析BP神经网络:从理论到实践
语文乌托邦
本文还有配套的精品资源,点击获取简介:BP神经网络是一种通过反向传播算法实现权重更新的人工神经网络模型,广泛应用于多种任务。本文献深入探讨了BP神经网络的结构、前向传播、激活函数、误差函数、反向传播算法、梯度下降、学习率、权重初始化、过拟合与正则化、早停策略、批量与随机梯度下降、学习率衰减、动量法与Adam优化器,以及训练集、验证集与测试集等关键概念。通过这些基础知识,读者将能够理解并应用BP神经
- 纯Java实现反向传播算法:零依赖神经网络实战
一枚码农404
神经网络算法java算法反向传播Java机器学习神经网络算法实现深度学习基础
在深度学习框架泛滥的今天,理解算法底层实现变得愈发重要。反向传播(Backpropagation)作为神经网络训练的基石算法,其实现往往被各种框架封装。本文将突破常规,仅用Java标准库实现完整BP算法,帮助开发者:1)深入理解BP数学原理。2)掌握面向对象的神经网络实现。3)构建可扩展的算法框架。该篇文章彻底摆脱第三方依赖,展现Java的数值计算潜力。一、反向传播算法原理速览反向传播本质是链式法
- 第20节:深度学习基础-反向传播算法详解
点我头像干啥
从零开始学习深度学习图像分类实战(pytorch)深度学习神经网络人工智能机器学习
一、引言反向传播算法(Backpropagation,简称BP算法)是深度学习领域最为核心的算法之一,它为神经网络提供了一种高效计算梯度的方法,使得基于梯度的优化成为可能。自20世纪80年代被重新发现并广泛应用以来,反向传播算法已经成为训练多层神经网络的标准方法,推动了深度学习革命的发展。反向传播算法的本质是链式法则(ChainRule)在神经网络中的巧妙应用,它通过从输出层向输入层反向传播误差信
- 人工智能应用:从技术突破到生态重构的演进之路
feng99520
人工智能IAAAIAAIAAAIF
一、人工智能的发展历程:从符号主义到通用智能探索人工智能(AI)的发展始于20世纪中叶,其历程可划分为四个关键阶段:符号主义与早期探索(1950s-1970s)以逻辑推理和专家系统为核心,例如医疗诊断工具MYCIN。然而,受限于算力和数据,这一阶段陷入第一次“AI寒冬”。连接主义与神经网络崛起(1980s-2000s)反向传播算法(1986年)和卷积神经网络(1998年)的突破,推动计算机视觉和语
- NoProp:无需反向传播,基于去噪原理的非全局梯度传播神经网络训练,可大幅降低内存消耗
人工智能深度学习神经网络
反向传播算法自四十年前问世以来一直作为深度学习的基石,然而仍然面临两项关键技术挑战:首先由于必须存储中间激活值用于梯度计算,导致内存消耗显著;其次其本质上的顺序计算特性严重限制了模型在分布式多GPU环境下的并行扩展能力。近期牛津大学、Mila研究所与GoogleDeepMind的研究团队联合提出了一种名为NoProp的创新方法。该研究成果表明,图像分类模型的训练可以完全不依赖任何形式的全局前向或反
- 【人工智能数学基础】——反向传播算法详解:从链式法则到神经网络训练实战
Sonal_Lynn
AI专题人工智能算法神经网络深度学习机器学习
目录编辑前言:反向传播——深度学习的"学习引擎"一、反向传播的数学基石1.1链式法则:反向传播的核心1.2计算图视角下的反向传播二、从零实现反向传播2.1Python实现双层神经网络2.2代码解析:三、反向传播的优化策略3.1常见问题及解决方案3.2现代优化器的实现对比四、PyTorch实战反向传播4.1自动微分实现4.2关键优势:五、反向传播的生物学启示5.1与人类神经系统的相似性5.2未来发展
- 深度学习-torch2
De_Yh
深度学习人工智能
八、自动微分自动微分模块torch.autograd负责自动计算张量操作的梯度,具有自动求导功能。自动微分模块是构成神经网络训练的必要模块,可以实现网络权重参数的更新,使得反向传播算法的实现变得简单而高效。1.基础概念张量Torch中一切皆为张量,属性requires_grad决定是否对其进行梯度计算。默认是False,如需计算梯度则设置为True。计算图:torch.autograd通过创建一个
- 使用python和matlab实现BP神经网络算法的分析比较
ChaseDreamRunner
pythonmatlab神经网络
分析和比较使用Python和MATLAB实现BP神经网络算法实现的复杂度、代码可读性、库支持、性能以及应用的灵活性等。1.BP神经网络的基本原理BP神经网络(BackPropagationNeuralNetwork)是一种多层前馈神经网络,通过反向传播算法来训练网络。其基本思想是利用梯度下降法,通过反向传播误差梯度不断调整网络的权值和偏置,使网络的实际输出值与期望输出值之间的误差最小化。2.Pyt
- 人工智能100问☞第3问:深度学习的核心原理是什么?
AI算力那些事儿
人工智能100问人工智能深度学习
目录一、通俗解释二、专业解析三、权威参考深度学习的核心原理是通过构建多层神经网络结构,逐层自动提取并组合数据特征,利用反向传播算法优化参数,从而实现对复杂数据的高层次抽象和精准预测。一、通俗解释深度学习的核心原理,就像是教计算机像婴儿学画画一样,从简单线条到复杂图案一步步升级能力。自动找特征:传统方法需要人工告诉计算机“猫有尖耳朵”,而深度学习直接把千万张图片丢给它,自己琢磨出“耳朵形状”“毛发纹
- 【机器学习】——神经网络与深度学习_机器学习 深度学习 神经网络(1)
2401_84183451
2024年程序员学习机器学习深度学习神经网络
引入一、神经网络及其主要算法1、前馈神经网络2、感知器3、三层前馈网络(多层感知器MLP)4、反向传播算法二、深度学习1、自编码算法AutorEncoder
- 【Matlab】-- 基于MATLAB的飞蛾扑火算法与反向传播算法的混凝土强度预测
电科_银尘
Matlab程序matlab算法开发语言
文章目录文章目录01内容概要02MFO-BP模型03部分代码04运行结果05参考文献06代码下载01内容概要本资料介绍了一种基于飞蛾扑火算法(MothFlameOptimization,MFO)与反向传播算法(Backpropagation,BP)的混凝土强度预测模型。飞蛾扑火算法是一种新兴的元启发式优化算法,它模拟了飞蛾在自然界中向光源飞行的行为,用于寻找最优解。结合反向传播算法,该模型能够优化
- 深入解析Quantum-GABP:量子神经网络的实现与应用
m0_57781768
神经网络量子计算人工智能
深入解析Quantum-GABP:量子神经网络的实现与应用引言在现代科技飞速发展的今天,量子计算与神经网络的结合成为了研究热点。量子神经网络(QuantumNeuralNetworks,QNN)凭借其巨大的计算潜力和独特的量子特性,逐渐吸引了研究者的关注。其中,Quantum-GABP(量子广义反向传播算法)作为一种高效的量子神经网络训练算法,展现出极大的应用前景。本文将深入探讨Quantum-G
- tensorflow keras 报错 :No gradients provided for any variable 原因与解决办法
研志必有功
tensorflow报错tensorflow深度学习机器学习神经网络自然语言处理
错误分析Nogradientsprovidedforanyvariable这个意思是没有梯度给已知的所有函数,为什么会出现这个错误呢,因为在深度学习中,梯度的更新是由于反向传播算法的实现的,如果损失函数没有与已知的任何(除输入)层关联,那么,损失函数就无法求出关于各个函数的梯度,导致错误解决办法例如损失函数defcontrastive_loss_layer(left_inputs,right_in
- 深度学习模型:原理、应用与代码实践
accurater
c++算法笔记人工智能深度学习
引言深度学习作为人工智能的核心技术,已在图像识别、自然语言处理、代码生成等领域取得突破性进展。其核心在于通过多层神经网络自动提取数据特征,解决复杂任务。本文将从基础理论、模型架构、优化策略、应用场景及挑战等多个维度展开,结合代码示例,系统解析深度学习模型的技术脉络与实践方法。一、深度学习基础理论神经网络基本原理神经网络由输入层、隐藏层和输出层构成,通过反向传播算法调整权重。以全连接网络为例,前向传
- 复试英文准备方法
小王Jacky
计算机英语英语计算机英语
为了高效准备计算机领域的英文文献翻译面试,可以按照以下步骤进行系统训练,重点提升专业术语积累、文献结构理解和即时翻译能力:一、核心能力针对性训练专业术语速记建立术语库:-每天整理《算法导论》《人工智能:现代方法》等经典教材目录中的核心术语(如:Backpropagation-反向传播、HashCollision--用Excel或Anki卡片记录英文术语+中文释义+例句(例:"Thetimecomp
- 深入浅出Java Annotation(元注解和自定义注解)
Josh_Persistence
Java Annotation元注解自定义注解
一、基本概述
Annontation是Java5开始引入的新特征。中文名称一般叫注解。它提供了一种安全的类似注释的机制,用来将任何的信息或元数据(metadata)与程序元素(类、方法、成员变量等)进行关联。
更通俗的意思是为程序的元素(类、方法、成员变量)加上更直观更明了的说明,这些说明信息是与程序的业务逻辑无关,并且是供指定的工具或
- mysql优化特定类型的查询
annan211
java工作mysql
本节所介绍的查询优化的技巧都是和特定版本相关的,所以对于未来mysql的版本未必适用。
1 优化count查询
对于count这个函数的网上的大部分资料都是错误的或者是理解的都是一知半解的。在做优化之前我们先来看看
真正的count()函数的作用到底是什么。
count()是一个特殊的函数,有两种非常不同的作用,他可以统计某个列值的数量,也可以统计行数。
在统
- MAC下安装多版本JDK和切换几种方式
棋子chessman
jdk
环境:
MAC AIR,OS X 10.10,64位
历史:
过去 Mac 上的 Java 都是由 Apple 自己提供,只支持到 Java 6,并且OS X 10.7 开始系统并不自带(而是可选安装)(原自带的是1.6)。
后来 Apple 加入 OpenJDK 继续支持 Java 6,而 Java 7 将由 Oracle 负责提供。
在终端中输入jav
- javaScript (1)
Array_06
JavaScriptjava浏览器
JavaScript
1、运算符
运算符就是完成操作的一系列符号,它有七类: 赋值运算符(=,+=,-=,*=,/=,%=,<<=,>>=,|=,&=)、算术运算符(+,-,*,/,++,--,%)、比较运算符(>,<,<=,>=,==,===,!=,!==)、逻辑运算符(||,&&,!)、条件运算(?:)、位
- 国内顶级代码分享网站
袁潇含
javajdkoracle.netPHP
现在国内很多开源网站感觉都是为了利益而做的
当然利益是肯定的,否则谁也不会免费的去做网站
&
- Elasticsearch、MongoDB和Hadoop比较
随意而生
mongodbhadoop搜索引擎
IT界在过去几年中出现了一个有趣的现象。很多新的技术出现并立即拥抱了“大数据”。稍微老一点的技术也会将大数据添进自己的特性,避免落大部队太远,我们看到了不同技术之间的边际的模糊化。假如你有诸如Elasticsearch或者Solr这样的搜索引擎,它们存储着JSON文档,MongoDB存着JSON文档,或者一堆JSON文档存放在一个Hadoop集群的HDFS中。你可以使用这三种配
- mac os 系统科研软件总结
张亚雄
mac os
1.1 Microsoft Office for Mac 2011
大客户版,自行搜索。
1.2 Latex (MacTex):
系统环境:https://tug.org/mactex/
&nb
- Maven实战(四)生命周期
AdyZhang
maven
1. 三套生命周期 Maven拥有三套相互独立的生命周期,它们分别为clean,default和site。 每个生命周期包含一些阶段,这些阶段是有顺序的,并且后面的阶段依赖于前面的阶段,用户和Maven最直接的交互方式就是调用这些生命周期阶段。 以clean生命周期为例,它包含的阶段有pre-clean, clean 和 post
- Linux下Jenkins迁移
aijuans
Jenkins
1. 将Jenkins程序目录copy过去 源程序在/export/data/tomcatRoot/ofctest-jenkins.jd.com下面 tar -cvzf jenkins.tar.gz ofctest-jenkins.jd.com &
- request.getInputStream()只能获取一次的问题
ayaoxinchao
requestInputstream
问题:在使用HTTP协议实现应用间接口通信时,服务端读取客户端请求过来的数据,会用到request.getInputStream(),第一次读取的时候可以读取到数据,但是接下来的读取操作都读取不到数据
原因: 1. 一个InputStream对象在被读取完成后,将无法被再次读取,始终返回-1; 2. InputStream并没有实现reset方法(可以重
- 数据库SQL优化大总结之 百万级数据库优化方案
BigBird2012
SQL优化
网上关于SQL优化的教程很多,但是比较杂乱。近日有空整理了一下,写出来跟大家分享一下,其中有错误和不足的地方,还请大家纠正补充。
这篇文章我花费了大量的时间查找资料、修改、排版,希望大家阅读之后,感觉好的话推荐给更多的人,让更多的人看到、纠正以及补充。
1.对查询进行优化,要尽量避免全表扫描,首先应考虑在 where 及 order by 涉及的列上建立索引。
2.应尽量避免在 where
- jsonObject的使用
bijian1013
javajson
在项目中难免会用java处理json格式的数据,因此封装了一个JSONUtil工具类。
JSONUtil.java
package com.bijian.json.study;
import java.util.ArrayList;
import java.util.Date;
import java.util.HashMap;
- [Zookeeper学习笔记之六]Zookeeper源代码分析之Zookeeper.WatchRegistration
bit1129
zookeeper
Zookeeper类是Zookeeper提供给用户访问Zookeeper service的主要API,它包含了如下几个内部类
首先分析它的内部类,从WatchRegistration开始,为指定的znode path注册一个Watcher,
/**
* Register a watcher for a particular p
- 【Scala十三】Scala核心七:部分应用函数
bit1129
scala
何为部分应用函数?
Partially applied function: A function that’s used in an expression and that misses some of its arguments.For instance, if function f has type Int => Int => Int, then f and f(1) are p
- Tomcat Error listenerStart 终极大法
ronin47
tomcat
Tomcat报的错太含糊了,什么错都没报出来,只提示了Error listenerStart。为了调试,我们要获得更详细的日志。可以在WEB-INF/classes目录下新建一个文件叫logging.properties,内容如下
Java代码
handlers = org.apache.juli.FileHandler, java.util.logging.ConsoleHa
- 不用加减符号实现加减法
BrokenDreams
实现
今天有群友发了一个问题,要求不用加减符号(包括负号)来实现加减法。
分析一下,先看最简单的情况,假设1+1,按二进制算的话结果是10,可以看到从右往左的第一位变为0,第二位由于进位变为1。
 
- 读《研磨设计模式》-代码笔记-状态模式-State
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
当一个对象的内在状态改变时允许改变其行为,这个对象看起来像是改变了其类
状态模式主要解决的是当控制一个对象状态的条件表达式过于复杂时的情况
把状态的判断逻辑转移到表示不同状态的一系列类中,可以把复杂的判断逻辑简化
如果在
- CUDA程序block和thread超出硬件允许值时的异常
cherishLC
CUDA
调用CUDA的核函数时指定block 和 thread大小,该大小可以是dim3类型的(三维数组),只用一维时可以是usigned int型的。
以下程序验证了当block或thread大小超出硬件允许值时会产生异常!!!GPU根本不会执行运算!!!
所以验证结果的正确性很重要!!!
在VS中创建CUDA项目会有一个模板,里面有更详细的状态验证。
以下程序在K5000GPU上跑的。
- 诡异的超长时间GC问题定位
chenchao051
jvmcmsGChbaseswap
HBase的GC策略采用PawNew+CMS, 这是大众化的配置,ParNew经常会出现停顿时间特别长的情况,有时候甚至长到令人发指的地步,例如请看如下日志:
2012-10-17T05:54:54.293+0800: 739594.224: [GC 739606.508: [ParNew: 996800K->110720K(996800K), 178.8826900 secs] 3700
- maven环境快速搭建
daizj
安装mavne环境配置
一 下载maven
安装maven之前,要先安装jdk及配置JAVA_HOME环境变量。这个安装和配置java环境不用多说。
maven下载地址:http://maven.apache.org/download.html,目前最新的是这个apache-maven-3.2.5-bin.zip,然后解压在任意位置,最好地址中不要带中文字符,这个做java 的都知道,地址中出现中文会出现很多
- PHP网站安全,避免PHP网站受到攻击的方法
dcj3sjt126com
PHP
对于PHP网站安全主要存在这样几种攻击方式:1、命令注入(Command Injection)2、eval注入(Eval Injection)3、客户端脚本攻击(Script Insertion)4、跨网站脚本攻击(Cross Site Scripting, XSS)5、SQL注入攻击(SQL injection)6、跨网站请求伪造攻击(Cross Site Request Forgerie
- yii中给CGridView设置默认的排序根据时间倒序的方法
dcj3sjt126com
GridView
public function searchWithRelated() {
$criteria = new CDbCriteria;
$criteria->together = true; //without th
- Java集合对象和数组对象的转换
dyy_gusi
java集合
在开发中,我们经常需要将集合对象(List,Set)转换为数组对象,或者将数组对象转换为集合对象。Java提供了相互转换的工具,但是我们使用的时候需要注意,不能乱用滥用。
1、数组对象转换为集合对象
最暴力的方式是new一个集合对象,然后遍历数组,依次将数组中的元素放入到新的集合中,但是这样做显然过
- nginx同一主机部署多个应用
geeksun
nginx
近日有一需求,需要在一台主机上用nginx部署2个php应用,分别是wordpress和wiki,探索了半天,终于部署好了,下面把过程记录下来。
1. 在nginx下创建vhosts目录,用以放置vhost文件。
mkdir vhosts
2. 修改nginx.conf的配置, 在http节点增加下面内容设置,用来包含vhosts里的配置文件
#
- ubuntu添加admin权限的用户账号
hongtoushizi
ubuntuuseradd
ubuntu创建账号的方式通常用到两种:useradd 和adduser . 本人尝试了useradd方法,步骤如下:
1:useradd
使用useradd时,如果后面不加任何参数的话,如:sudo useradd sysadm 创建出来的用户将是默认的三无用户:无home directory ,无密码,无系统shell。
顾应该如下操作:
- 第五章 常用Lua开发库2-JSON库、编码转换、字符串处理
jinnianshilongnian
nginxlua
JSON库
在进行数据传输时JSON格式目前应用广泛,因此从Lua对象与JSON字符串之间相互转换是一个非常常见的功能;目前Lua也有几个JSON库,本人用过cjson、dkjson。其中cjson的语法严格(比如unicode \u0020\u7eaf),要求符合规范否则会解析失败(如\u002),而dkjson相对宽松,当然也可以通过修改cjson的源码来完成
- Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
yaerfeng1989
timerquartz定时器
原创整理不易,转载请注明出处:Spring定时器配置的两种实现方式OpenSymphony Quartz和java Timer详解
代码下载地址:http://www.zuidaima.com/share/1772648445103104.htm
有两种流行Spring定时器配置:Java的Timer类和OpenSymphony的Quartz。
1.Java Timer定时
首先继承jav
- Linux下df与du两个命令的差别?
pda158
linux
一、df显示文件系统的使用情况,与du比較,就是更全盘化。 最经常使用的就是 df -T,显示文件系统的使用情况并显示文件系统的类型。 举比例如以下: [root@localhost ~]# df -T Filesystem Type &n
- [转]SQLite的工具类 ---- 通过反射把Cursor封装到VO对象
ctfzh
VOandroidsqlite反射Cursor
在写DAO层时,觉得从Cursor里一个一个的取出字段值再装到VO(值对象)里太麻烦了,就写了一个工具类,用到了反射,可以把查询记录的值装到对应的VO里,也可以生成该VO的List。
使用时需要注意:
考虑到Android的性能问题,VO没有使用Setter和Getter,而是直接用public的属性。
表中的字段名需要和VO的属性名一样,要是不一样就得在查询的SQL中
- 该学习笔记用到的Employee表
vipbooks
oraclesql工作
这是我在学习Oracle是用到的Employee表,在该笔记中用到的就是这张表,大家可以用它来学习和练习。
drop table Employee;
-- 员工信息表
create table Employee(
-- 员工编号
EmpNo number(3) primary key,
-- 姓