- day15|前端框架学习和算法
universe_01
前端算法笔记
T22括号生成先把所有情况都画出来,然后(在满足什么情况下)把不符合条件的删除。T78子集要画树状图,把思路清晰。可以用暴力法、回溯法和DFS做这个题DFS深度搜索:每个边都走完,再回溯应用:二叉树搜索,图搜索回溯算法=DFS+剪枝T200岛屿数量(非常经典BFS宽度把树状转化成队列形式,lambda匿名函数“一次性的小函数,没有名字”setup语法糖:让代码更简洁好写的语法ref创建:基本类型的
- 模型压缩中的四大核心技术 —— 量化、剪枝、知识蒸馏和二值化
由数入道
人工智能剪枝人工智能算法模型压缩量化知识蒸馏二值化
一、量化(Quantization)量化的目标在于将原始以32位浮点数表示的模型参数和中间激活,转换为低精度(如FP16、INT8、甚至更低位宽)的数值表示,从而在减少模型存储占用和内存带宽的同时,加速推理运算,特别适用于移动、嵌入式和边缘计算场景。1.1概念与目标基本思想将高精度数值离散化为低精度表示。例如,将FP32权重转换为INT8,可降低内存需求约4倍,同时在支持低精度运算的硬件上加速计算
- 算法优化之道:从暴力破解到剪枝策略的进阶之路
rjewh88998
开发语言算法性能优化重构
在算法的世界里,解决问题的路径往往从“能做出来”开始,逐步走向“做得更好”。暴力破解作为最直接的解题思路,如同蹒跚学步的孩童,虽能抵达终点,却效率低下;而剪枝策略则像经验丰富的向导,通过剔除无效路径,大幅缩短前行距离。从暴力破解到剪枝策略的演进,不仅是效率的跃升,更是算法思维从“穷举”到“智慧筛选”的质变。本文将沿着这条进阶之路,解析算法优化的核心逻辑,揭示剪枝策略如何让复杂问题变得可解。暴力破解
- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 模型剪枝(分析)
yc_hu
剪枝python机器学习
1.函数入口与设备初始化defget_layer_level_pruning_rate(args):device=torch.device("cuda"iftorch.cuda.is_available()else"cpu")功能:检测可用设备(优先使用GPU),为后续模型加载做准备。2.数据加载与评估函数定义train_loader,val_loader,test_loader,criterio
- 蓝桥杯竞赛向(C/C++语言)之博主掌握不太好的算法篇(DFS)
CAU界编程小白
蓝桥杯篇深度优先算法蓝桥杯
大纲1.DFS回溯剪枝(刚好博主也在剪枝)2.字符串相关算法KMPmanacher字符串哈希字典树01trie树(这么多感觉要趋势了)下次一定(也有可能去更新14届蓝桥杯A组真题)//会带一点AC自动机但是不会讲因为我不会蓝桥几乎不会考(看水的字数博主沉淀了几天(回来更新了,估计可能只能讲个搜索了,字符串东西很多,下次讲,主要讲搜索的原因是什么捏,(博主刷了一会题,发现搜索做的真的很不好…需要多刷
- 模型优化-------模型压缩
AI扶我青云志
人工智能模型优化
模型压缩是一种优化技术,目标是在尽量保留模型性能的前提下,减少模型的体积、计算成本和内存占用。特别适合模型部署在边缘设备、移动端、嵌入式系统等资源受限环境中。其中,“剪枝(Pruning)、量化(Quantization)和知识蒸馏(KnowledgeDistillation)”是最常用且研究最深入的三种方法。一、剪枝(Pruning)原理:剪枝的核心思想是去掉对模型输出影响较小的参数或结构,使得
- 【Luogu】每日一题——Day8. P13085 [SCOI2009] windy 数(加强版)(数位DP)
KyollBM
深度优先算法图论
链接:P13085[SCOI2009]windy数(加强版)-洛谷题目:思路:数位DP看到这种统计符合XX特征的数字时我们就能想到利用数位DP来做我们通常有两种做法,一种是DFS+记忆化,另一种则是直接DP预处理所有情况然后统计这里我们采用DFS+记忆化来实现,因为比较简单易懂我们通常使用4个量来递归,now代表现在是第几位,last代表上一位我们填了什么,allzero表示之前是不是全是0,li
- 基于densenet网络创新的肺癌识别研究
深度学习乐园
深度学习人工智能densenet
获取项目源码点击文末名片摘要本项目针对肺癌CT图像识别等医学影像分析场景,基于DenseNet网络进行创新性改进,综合引入多尺度卷积、深度可分离卷积、注意力机制以及空间金字塔池化(SPP)等模块,以期提升对不同大小的肺结节及关键病理特征的识别能力。同时,通过深度可分离卷积和可选的通道剪枝等策略,将网络参数量和计算开销显著降低,为实际临床应用(如实时诊断系统)提供可行性。本项目的核心内容包括以下几个
- 生活需要仪式感
侯丽颖
几天前去早市,看到有卖鲜花的人,于是起兴,买了3支百合,店家很热情,为我选了3支粉色百合,含苞待放。回到家剪枝摘叶,没有花瓶,用矿泉水瓶代替,不影响心情,插好后,心情大好,静待花开。今天百合花已全然绽放,进入家门,闻到花香心情都是香香的,庞先生也赞不绝口。是啊,平时生活比较平淡,需要一些颜色、一些香气来点缀,让生活更充实,增加一些小仪式,让生活更有品质。图片发自App
- Minmax 算法与 Alpha-Beta 剪枝小教学
超级小狗
计算机博弈算法剪枝机器学习
要理解Minmax算法和Alpha-Beta剪枝算法,我们可以从“两人零和博弈”场景入手(比如棋类游戏、石头剪刀布)。这类场景的核心是:你和对手轮流决策,你的目标是最大化自己的收益,对手则会最小化你的收益。一、Minmax算法:最简单的博弈决策1.核心思想想象你在玩一个简单的游戏:你和对手轮流选数,最终的得分由你们的选择共同决定。你(Max方):每次选择都想让最终得分尽可能高(最大化收益)。对手(
- YOLOv11模型轻量化挑战技术文章大纲
程序猿全栈の董(董翔)
githubYOLOv11
模型轻量化的背景与意义目标检测模型YOLOv11的性能与应用场景轻量化的必要性:边缘设备部署、实时性需求、计算资源限制轻量化面临的挑战:精度与速度的权衡、模型压缩方法的选择YOLOv11的轻量化技术方向网络结构优化:深度可分离卷积、分组卷积、瓶颈设计模型剪枝:结构化剪枝与非结构化剪枝策略知识蒸馏:教师-学生模型框架与特征匹配方法量化与低比特压缩:FP16/INT8量化与二值化网络轻量化实现的具体方
- 计算机视觉:Transformer的轻量化与加速策略
xcLeigh
计算机视觉CV计算机视觉transformer人工智能AI策略
计算机视觉:Transformer的轻量化与加速策略一、前言二、Transformer基础概念回顾2.1Transformer架构概述2.2自注意力机制原理三、Transformer轻量化策略3.1模型结构优化3.1.1减少层数和头数3.1.2优化Patch大小3.2参数共享与剪枝3.2.1参数共享3.2.2剪枝3.3知识蒸馏四、Transformer加速策略4.1模型量化4.2.2TPU加速4.
- SUNDAE-一种称为“光谱剪枝”的技术来优化和压缩3DGS模型
huarzail
3DGS剪枝3d算法
清华大学人工智能产业研究院、伦敦帝国理工学院、北京航空航天大学、北京理工大学、中国科学院大学、香港中文大学(深圳)、中国电信人工智能研究院(TeleAI)EVOL实验室的研究人员联合推出了一种新的3D场景表示方法-SUNDAE,它通过一种称为“光谱剪枝”的技术来优化和压缩3D高斯溅射(3DGaussianSplatting,简称3DGS)模型,同时使用神经网络补偿来保持渲染质量。项目主页:SUND
- YOLOv11模型轻量化挑战的技术
黑客飓风
YOLO目标跟踪人工智能
YOLOv11模型轻量化挑战的技术文章大纲背景与意义YOLOv11在目标检测领域的地位与优势轻量化需求的实际应用场景(移动端、嵌入式设备等)轻量化面临的挑战:精度与速度的权衡YOLOv11模型结构分析整体架构设计特点(如主干网络、特征融合模块等)参数量与计算量分布的关键瓶颈现有轻量化改进的局限性轻量化技术路线网络结构优化深度可分离卷积替代传统卷积注意力机制的高效嵌入设计冗余模块的剪枝与删除量化与压
- Transformer模型压缩:结构化剪枝与混合精度量化研究
pk_xz123456
仿真模型机器学习深度学习transformer剪枝深度学习
Transformer模型压缩:结构化剪枝与混合精度量化研究摘要本文针对Transformer模型在实际部署中面临的计算资源消耗大、内存占用高和推理延迟等问题,提出了一种结合结构化剪枝与混合精度量化的综合压缩方案。我们首先分析了Transformer模型的结构特点及其在计算效率方面的瓶颈,然后系统地研究了结构化剪枝和混合精度量化的理论基础与实现方法。通过实验验证,我们的方法在保持模型性能的同时显著
- 【深度学习】神经网络剪枝方法的分类
烟锁池塘柳0
机器学习与深度学习深度学习神经网络剪枝
神经网络剪枝方法的分类摘要随着深度学习模型,特别是大语言模型(LLM)的参数量爆炸式增长,模型的部署和推理成本变得异常高昂。如何在保持模型性能的同时,降低其计算和存储需求,成为了工业界和学术界的核心议题。神经网络剪枝(Pruning)作为模型压缩的关键技术之一,应运而生。本文将解析剪枝技术的不同分类,深入探讨其原理、优缺点。文章目录神经网络剪枝方法的分类摘要1为什么我们需要剪枝?2分类方法一:剪什
- 嵌入式AI模型压缩技术:让大模型变小
AI智能探索者
AIAgent智能体开发实战人工智能ai
嵌入式AI模型压缩技术:让大模型变小关键词:嵌入式AI、模型压缩、剪枝、量化、知识蒸馏、轻量化网络、端侧部署摘要:当我们用手机拍照时,AI能瞬间识别出“这是一只猫”;智能摄像头能在0.1秒内检测到“有人闯入”。这些“快如闪电”的AI功能背后,藏着一项关键技术——嵌入式AI模型压缩。本文将用“给盆栽修剪枝叶”“用简笔画代替油画”等生活类比,带您一步步理解模型压缩的核心技术(剪枝、量化、知识蒸馏、轻量
- TensorFlow运行时核心:DirectSession::Run全解析
Jay Kay
tfservingc++tensorflow分布式
TensorFlow运行时核心:DirectSession::Run全解析TensorFlow的本地执行模式通过DirectSession::Run实现高效计算图处理,其核心流程分为三个阶段:图剪枝生成ClientGraph、设备间图分裂、跨设备并发执行。下面结合源码层设计深入剖析各环节实现原理。一、图剪枝:从FullGraph到ClientGraph目标:根据Session::Run指定的输入(
- 【第二章:机器学习与神经网络概述】03.类算法理论与实践-(3)决策树分类器
IT古董
人工智能课程机器学习算法神经网络
第二章:机器学习与神经网络概述第三部分:类算法理论与实践第三节:决策树分类器内容:信息增益、剪枝技术、过拟合与泛化能力。决策树是一种常用于分类和回归的树状结构模型,它通过一系列特征判断进行决策,有良好的可解释性。一、基本概念节点(Node):表示特征判断条件边(Branch):表示特征判断的结果路径叶子节点(Leaf):表示分类结果二、划分准则:信息增益(InformationGain)信息增益衡
- C4.5算法深度解析:决策树进化的里程碑
大千AI助手
算法决策树机器学习C4.5Python人工智能AI
C4.5是机器学习史上最经典的算法之一,由ID3之父RossQuinlan在1993年提出。作为ID3的革命性升级,它不仅解决了前代的核心缺陷,更开创了连续特征处理和剪枝技术的先河,成为现代决策树的奠基之作。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!往期文章推荐:20.用Mermaid代码画E
- 洛谷 P3953 [ NOIP 2017 ] 逛公园 —— 最短路DP
aodan5477
数据结构与算法
题目:https://www.luogu.org/problemnew/show/P3953主要是看题解...还是觉得好难想啊...dfsDP,剩余容量的损耗是边权减去两点最短路差值...表示对于最短路来说多走了这么多...还要注意该点能否到达n号点,不能就不走了(剪枝);%p那个地方会爆int吗?反正%=pRE了一个点...(然而改成ll还是RE)代码如下:#include#include#in
- CART算法全解析:分类回归双修的决策树之王
大千AI助手
人工智能Python#OTHER算法分类回归决策树数据挖掘CARTDecisionTree
CART(ClassificationandRegressionTrees)是决策树领域的里程碑算法,由统计学家Breiman等人在1984年提出。作为当今最主流的决策树实现,它革命性地统一了分类与回归任务,其二叉树结构和剪枝技术成为现代集成学习(如随机森林、XGBoost)的基石。本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕
- 决策树算法
雨巷码行人
机器学习算法决策树机器学习
文章目录基本概念与原理决策树定义两种理解视角模型构建三要素1.特征选择(1)信息增益(ID3算法)(2)信息增益比(C4.5算法)(3)基尼指数(CART算法)2.决策树生成3.决策树剪枝(1)预剪枝(Pre-pruning)(2)后剪枝(Post-pruning)决策树算法对比CART回归树生成Scikit-learn实现分类树CART决策树-回归树决策树优劣势总结基本概念与原理决策树定义树形结
- 解锁决策树:数据挖掘的智慧引擎
目录一、决策树:数据挖掘的基石二、决策树原理剖析2.1决策树的基本结构2.2决策树的构建流程2.2.1特征选择2.2.2数据集划分2.2.3递归构建三、决策树的实践应用3.1数据准备3.2模型构建与训练3.3模型评估四、决策树的优化策略4.1剪枝策略4.1.1预剪枝4.1.2后剪枝4.2集成学习五、案例分析5.1医疗诊断案例5.2金融风险评估案例六、总结与展望一、决策树:数据挖掘的基石在当今数字化
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)
king of code porter
深度学习深度学习剪枝人工智能
一、背景:为什么需要模型剪枝?随着深度学习的发展,模型参数量和计算量呈指数级增长。以ResNet18为例,其在ImageNet上的参数量约为1100万,虽然在服务器端运行流畅,但在移动端或嵌入式设备上部署时,内存和计算资源的限制使得直接使用大模型变得困难。模型剪枝(ModelPruning)作为模型压缩的核心技术之一,通过删除冗余的神经元或通道,在保持模型性能的前提下显著降低模型大小和计算量,是解
- 深度学习之模型压缩三驾马车:模型剪枝、模型量化、知识蒸馏
king of code porter
深度学习深度学习剪枝人工智能
一、引言在深度学习中,我们训练出的神经网络往往非常庞大(比如像ResNet、YOLOv8、VisionTransformer),虽然精度很高,但“太重”了,运行起来很慢,占用内存大,不适合部署到手机、摄像头、机器人等资源受限的设备上。于是我们就想出了一个办法:给模型“瘦身”,让它又快又轻,还能保持不错的准确率。这就是——模型压缩!模型压缩有三种最常用的方法:模型剪枝模型量化知识蒸馏下面我们分别来通
- 机器学习×第十二卷:回归树与剪枝策略——她剪去多余的分支,只保留想靠近你的那一层
Gyoku Mint
AI修炼日记人工智障机器学习人工智能pycharm算法回归剪枝数据挖掘
【第一节·她不再用标签定义你,而是试着预测你真实的模样】什么是回归决策树(RegressionTree)?狐狐:“她以前问你是A还是B,现在她问你——‘你大概是多少?’”与之前我们学过的分类树(ClassificationTree)不同,回归树是一种用来预测连续值变量的模型。她不再只判断“是否会拖欠贷款”,而是试着预测“你拖欠了多少”。分类树:输出为类别(如Yes/No)回归树:输出为数值(如3.
- 二叉树中使用深度优先搜索(DFS)的几种经典代码形式总结
凸头
深度优先算法
DFS在二叉树中运用示例示例1:经典DFS遍历(先序遍历)示例2:DFS+回溯(如路径问题)示例3:DFS判断平衡二叉树(递归+剪枝)示例4:DFS用于路径和为目标值(LeetCode112)示例5:判断是否是相同的树总结:DFS模板结构示例1:经典DFS遍历(先序遍历)publicclassSolution{publicvoiddfs(TreeNoderoot){if(root==null)re
- 深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(3)
引言前面的文章《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(1)》和《深度学习之模型压缩三驾马车:基于ResNet18的模型剪枝实战(2)》有做了相应的裁剪说明和实践,但是只是对其中的一个层进行采集的,这篇文章是记录对ResNet18中所有的残差层进行采集的一个过程。当然,前面也提到第一层是没有进行裁剪的,原因可以自己翻看前面的原因,后面也会有提到。一、ResNet18模型结构
- 二分查找排序算法
周凡杨
java二分查找排序算法折半
一:概念 二分查找又称
折半查找(
折半搜索/
二分搜索),优点是比较次数少,查找速度快,平均性能好;其缺点是要求待查表为有序表,且插入删除困难。因此,折半查找方法适用于不经常变动而 查找频繁的有序列表。首先,假设表中元素是按升序排列,将表中间位置记录的关键字与查找关键字比较,如果两者相等,则查找成功;否则利用中间位置记录将表 分成前、后两个子表,如果中间位置记录的关键字大于查找关键字,则进一步
- java中的BigDecimal
bijian1013
javaBigDecimal
在项目开发过程中出现精度丢失问题,查资料用BigDecimal解决,并发现如下这篇BigDecimal的解决问题的思路和方法很值得学习,特转载。
原文地址:http://blog.csdn.net/ugg/article/de
- Shell echo命令详解
daizj
echoshell
Shell echo命令
Shell 的 echo 指令与 PHP 的 echo 指令类似,都是用于字符串的输出。命令格式:
echo string
您可以使用echo实现更复杂的输出格式控制。 1.显示普通字符串:
echo "It is a test"
这里的双引号完全可以省略,以下命令与上面实例效果一致:
echo Itis a test 2.显示转义
- Oracle DBA 简单操作
周凡杨
oracle dba sql
--执行次数多的SQL
select sql_text,executions from (
select sql_text,executions from v$sqlarea order by executions desc
) where rownum<81;
&nb
- 画图重绘
朱辉辉33
游戏
我第一次接触重绘是编写五子棋小游戏的时候,因为游戏里的棋盘是用线绘制的,而这些东西并不在系统自带的重绘里,所以在移动窗体时,棋盘并不会重绘出来。所以我们要重写系统的重绘方法。
在重写系统重绘方法时,我们要注意一定要调用父类的重绘方法,即加上super.paint(g),因为如果不调用父类的重绘方式,重写后会把父类的重绘覆盖掉,而父类的重绘方法是绘制画布,这样就导致我们
- 线程之初体验
西蜀石兰
线程
一直觉得多线程是学Java的一个分水岭,懂多线程才算入门。
之前看《编程思想》的多线程章节,看的云里雾里,知道线程类有哪几个方法,却依旧不知道线程到底是什么?书上都写线程是进程的模块,共享线程的资源,可是这跟多线程编程有毛线的关系,呜呜。。。
线程其实也是用户自定义的任务,不要过多的强调线程的属性,而忽略了线程最基本的属性。
你可以在线程类的run()方法中定义自己的任务,就跟正常的Ja
- linux集群互相免登陆配置
林鹤霄
linux
配置ssh免登陆
1、生成秘钥和公钥 ssh-keygen -t rsa
2、提示让你输入,什么都不输,三次回车之后会在~下面的.ssh文件夹中多出两个文件id_rsa 和 id_rsa.pub
其中id_rsa为秘钥,id_rsa.pub为公钥,使用公钥加密的数据只有私钥才能对这些数据解密 c
- mysql : Lock wait timeout exceeded; try restarting transaction
aigo
mysql
原文:http://www.cnblogs.com/freeliver54/archive/2010/09/30/1839042.html
原因是你使用的InnoDB 表类型的时候,
默认参数:innodb_lock_wait_timeout设置锁等待的时间是50s,
因为有的锁等待超过了这个时间,所以抱错.
你可以把这个时间加长,或者优化存储
- Socket编程 基本的聊天实现。
alleni123
socket
public class Server
{
//用来存储所有连接上来的客户
private List<ServerThread> clients;
public static void main(String[] args)
{
Server s = new Server();
s.startServer(9988);
}
publi
- 多线程监听器事件模式(一个简单的例子)
百合不是茶
线程监听模式
多线程的事件监听器模式
监听器时间模式经常与多线程使用,在多线程中如何知道我的线程正在执行那什么内容,可以通过时间监听器模式得到
创建多线程的事件监听器模式 思路:
1, 创建线程并启动,在创建线程的位置设置一个标记
2,创建队
- spring InitializingBean接口
bijian1013
javaspring
spring的事务的TransactionTemplate,其源码如下:
public class TransactionTemplate extends DefaultTransactionDefinition implements TransactionOperations, InitializingBean{
...
}
TransactionTemplate继承了DefaultT
- Oracle中询表的权限被授予给了哪些用户
bijian1013
oracle数据库权限
Oracle查询表将权限赋给了哪些用户的SQL,以备查用。
select t.table_name as "表名",
t.grantee as "被授权的属组",
t.owner as "对象所在的属组"
- 【Struts2五】Struts2 参数传值
bit1129
struts2
Struts2中参数传值的3种情况
1.请求参数绑定到Action的实例字段上
2.Action将值传递到转发的视图上
3.Action将值传递到重定向的视图上
一、请求参数绑定到Action的实例字段上以及Action将值传递到转发的视图上
Struts可以自动将请求URL中的请求参数或者表单提交的参数绑定到Action定义的实例字段上,绑定的规则使用ognl表达式语言
- 【Kafka十四】关于auto.offset.reset[Q/A]
bit1129
kafka
I got serveral questions about auto.offset.reset. This configuration parameter governs how consumer read the message from Kafka when there is no initial offset in ZooKeeper or
- nginx gzip压缩配置
ronin47
nginx gzip 压缩范例
nginx gzip压缩配置 更多
0
nginx
gzip
配置
随着nginx的发展,越来越多的网站使用nginx,因此nginx的优化变得越来越重要,今天我们来看看nginx的gzip压缩到底是怎么压缩的呢?
gzip(GNU-ZIP)是一种压缩技术。经过gzip压缩后页面大小可以变为原来的30%甚至更小,这样,用
- java-13.输入一个单向链表,输出该链表中倒数第 k 个节点
bylijinnan
java
two cursors.
Make the first cursor go K steps first.
/*
* 第 13 题:题目:输入一个单向链表,输出该链表中倒数第 k 个节点
*/
public void displayKthItemsBackWard(ListNode head,int k){
ListNode p1=head,p2=head;
- Spring源码学习-JdbcTemplate queryForObject
bylijinnan
javaspring
JdbcTemplate中有两个可能会混淆的queryForObject方法:
1.
Object queryForObject(String sql, Object[] args, Class requiredType)
2.
Object queryForObject(String sql, Object[] args, RowMapper rowMapper)
第1个方法是只查
- [冰川时代]在冰川时代,我们需要什么样的技术?
comsci
技术
看美国那边的气候情况....我有个感觉...是不是要进入小冰期了?
那么在小冰期里面...我们的户外活动肯定会出现很多问题...在室内呆着的情况会非常多...怎么在室内呆着而不发闷...怎么用最低的电力保证室内的温度.....这都需要技术手段...
&nb
- js 获取浏览器型号
cuityang
js浏览器
根据浏览器获取iphone和apk的下载地址
<!DOCTYPE html>
<html>
<head>
<meta charset="utf-8" content="text/html"/>
<meta name=
- C# socks5详解 转
dalan_123
socketC#
http://www.cnblogs.com/zhujiechang/archive/2008/10/21/1316308.html 这里主要讲的是用.NET实现基于Socket5下面的代理协议进行客户端的通讯,Socket4的实现是类似的,注意的事,这里不是讲用C#实现一个代理服务器,因为实现一个代理服务器需要实现很多协议,头大,而且现在市面上有很多现成的代理服务器用,性能又好,
- 运维 Centos问题汇总
dcj3sjt126com
云主机
一、sh 脚本不执行的原因
sh脚本不执行的原因 只有2个
1.权限不够
2.sh脚本里路径没写完整。
二、解决You have new mail in /var/spool/mail/root
修改/usr/share/logwatch/default.conf/logwatch.conf配置文件
MailTo =
MailFrom
三、查询连接数
- Yii防注入攻击笔记
dcj3sjt126com
sqlWEB安全yii
网站表单有注入漏洞须对所有用户输入的内容进行个过滤和检查,可以使用正则表达式或者直接输入字符判断,大部分是只允许输入字母和数字的,其它字符度不允许;对于内容复杂表单的内容,应该对html和script的符号进行转义替换:尤其是<,>,',"",&这几个符号 这里有个转义对照表:
http://blog.csdn.net/xinzhu1990/articl
- MongoDB简介[一]
eksliang
mongodbMongoDB简介
MongoDB简介
转载请出自出处:http://eksliang.iteye.com/blog/2173288 1.1易于使用
MongoDB是一个面向文档的数据库,而不是关系型数据库。与关系型数据库相比,面向文档的数据库不再有行的概念,取而代之的是更为灵活的“文档”模型。
另外,不
- zookeeper windows 入门安装和测试
greemranqq
zookeeper安装分布式
一、序言
以下是我对zookeeper 的一些理解: zookeeper 作为一个服务注册信息存储的管理工具,好吧,这样说得很抽象,我们举个“栗子”。
栗子1号:
假设我是一家KTV的老板,我同时拥有5家KTV,我肯定得时刻监视
- Spring之使用事务缘由(2-注解实现)
ihuning
spring
Spring事务注解实现
1. 依赖包:
1.1 spring包:
spring-beans-4.0.0.RELEASE.jar
spring-context-4.0.0.
- iOS App Launch Option
啸笑天
option
iOS 程序启动时总会调用application:didFinishLaunchingWithOptions:,其中第二个参数launchOptions为NSDictionary类型的对象,里面存储有此程序启动的原因。
launchOptions中的可能键值见UIApplication Class Reference的Launch Options Keys节 。
1、若用户直接
- jdk与jre的区别(_)
macroli
javajvmjdk
简单的说JDK是面向开发人员使用的SDK,它提供了Java的开发环境和运行环境。SDK是Software Development Kit 一般指软件开发包,可以包括函数库、编译程序等。
JDK就是Java Development Kit JRE是Java Runtime Enviroment是指Java的运行环境,是面向Java程序的使用者,而不是开发者。 如果安装了JDK,会发同你
- Updates were rejected because the tip of your current branch is behind
qiaolevip
学习永无止境每天进步一点点众观千象git
$ git push joe prod-2295-1
To
[email protected]:joe.le/dr-frontend.git
! [rejected] prod-2295-1 -> prod-2295-1 (non-fast-forward)
error: failed to push some refs to '
[email protected]
- [一起学Hive]之十四-Hive的元数据表结构详解
superlxw1234
hivehive元数据结构
关键字:Hive元数据、Hive元数据表结构
之前在 “[一起学Hive]之一–Hive概述,Hive是什么”中介绍过,Hive自己维护了一套元数据,用户通过HQL查询时候,Hive首先需要结合元数据,将HQL翻译成MapReduce去执行。
本文介绍一下Hive元数据中重要的一些表结构及用途,以Hive0.13为例。
文章最后面,会以一个示例来全面了解一下,
- Spring 3.2.14,4.1.7,4.2.RC2发布
wiselyman
Spring 3
Spring 3.2.14、4.1.7及4.2.RC2于6月30日发布。
其中Spring 3.2.1是一个维护版本(维护周期到2016-12-31截止),后续会继续根据需求和bug发布维护版本。此时,Spring官方强烈建议升级Spring框架至4.1.7 或者将要发布的4.2 。
其中Spring 4.1.7主要包含这些更新内容。