- 背包DP之完全背包
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之完全背包一、完全背包基础认知1.1问题定义1.2核心特征二、完全背包的状态设计与递推2.1状态定义2.2递推关系2.3关键:正序遍历容量三、代码实现3.1基础二维DP实现3.2空间压缩优化优化说明:四、实例推演4.1输入数据4.2一维DP更新过程五、完全背包的变种与应用5.1变种问题5.2应用场景六、时间复杂度与优化6.1时间复杂度6.2优化技巧七、完全背包与0/1背包的核心区别总结完全
- 背包DP之树形背包(有依赖的背包)
GG不是gg
数据结构与算法分析#算法分析与设计动态规划
背包DP之树形背包-有依赖的背包一、树形背包基础认知1.1问题定义1.2核心特征二、树形背包的状态设计与递推2.1状态定义2.2递推关系2.3树的遍历顺序三、代码实现3.1数据结构定义3.2代码解析四、实例推演(以示例为例)4.1树结构4.2后序遍历处理五、时间复杂度与优化5.1时间复杂度5.2优化技巧六、树形背包的变种与应用6.1变种问题6.2应用场景背包问题中,0/1背包、完全背包等基础模型假
- DP学习笔记(8):完全背包求方案数,01背包求具体方案
完全背包求方案数常规分析在上一篇我们学习了01背包求方案数,今天我们学习完全背包求方案数。首先我们要区分一下01背包和完全背包的区别,01背包中的物品只有一个只有选或不选,完全背包中的物品有无限件实际有m/w[i]件,可以多选。我们在学习01背包求方案数时,要将j倒序来避免多选问题,在完全背包上我们需要多选,所以将j改为正序循环就可以满足我们的需求核心的状态和状态转移方程都是一样的状态:dp[j]
- 动态规划、背包问题入门
2303_Alpha
动态规划代理模式算法笔记c语言
目录1、动态规划定义2、数塔问题题目描述:思路:代码实现:3、最长有序子序列问题描述:代码实现:动态规划基本思想特点4、背包问题①01背包问题空间复杂度优化②完全背包③多重背包二进制优化④二维费用背包1、动态规划定义动态规划是一种用于解决优化问题的算法策略,它的核心是把一个复杂的问题分解为一系列相互关联的子问题,并通过求解子问题的最优解来构建原问题的最优解。它将一个问题分解为若干个子问题,然后从最
- MYOJ_5078:(洛谷P5662)[CSP-J2019] 纪念品(完全背包提高)
Jayfeather松鸦羽_sch
NOIP+CSP系列题解背包DP(不同于动规)算法动态规划c++
题目描述小伟突然获得一种超能力,他知道未来T天N种纪念品每天的价格。某个纪念品的价格是指购买一个该纪念品所需的金币数量,以及卖出一个该纪念品换回的金币数量。每天,小伟可以进行以下两种交易无限次:任选一个纪念品,若手上有足够金币,以当日价格购买该纪念品;卖出持有的任意一个纪念品,以当日价格换回金币。每天卖出纪念品换回的金币可以立即用于购买纪念品,当日购买的纪念品也可以当日卖出换回金币。当然,一直持有
- 动态规划之01背包与完全背包 (简单易懂)
zmuy
动态规划动态规划算法c语言
一、01背包01背包是在N件物品取出若干件放在空间为M的背包里,使得所装物品价值最大。每件物品的体积为W[1],W[2]~W[N],与之相对应的价值为V[1],V[2]~V[N]。同时还需要M个背包F[1],f[2]~f[M],空间依次为1,2~M,其值表示相应空间的背包当前所装物品的最大价值。(后面会解释为何需要M个背包)01背包是背包问题中最简单的问题。01背包的约束条件是给定几种物品,每种物
- 算法第37天| 完全背包\518. 零钱兑换 II\377. 组合总和 Ⅳ\57. 爬楼梯
烨然若神人~
算法算法
完全背包完全背包和01背包的区别纯完全背包,遍历背包和物品的顺序是可以对调的,只要求得出最大价值,不要求凑成总和的元素的顺序;01背包,遍历背包和物品的顺序是不可以对调的(一维不行,二维是可以的);一维解法中遍历顺序主要就是用来保证物品不被重复使用的,而完全背包中物品本身就是可以重复使用的,所以就无所谓了。完全背包题目思路与解法#include#includeusingnamespacestd;i
- 代码随想录算法训练营第38天 | 322. 零钱兑换 279.完全平方数 139.单词拆分 背包问题总结
ohnoooo9
代码随想录算法训练营打卡算法
322.零钱兑换如果求组合数就是外层for循环遍历物品,内层for遍历背包。如果求排列数就是外层for遍历背包,内层for循环遍历物品。钱币有顺序和没有顺序都可以,都不影响钱币的最小个数。视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?|LeetCode:322.零钱兑换_哔哩哔哩_bilibili代码随想录classSolution{publicintcoinChange(int[]
- 代码随想录算法训练营第三十八天 | 322.零钱兑换 279.完全平方数 139.单词拆分
m0_50413530
算法
322.零钱兑换题目链接:322.零钱兑换-力扣(LeetCode)文章讲解:代码随想录视频讲解:动态规划之完全背包,装满背包最少的物品件数是多少?|LeetCode:322.零钱兑换_哔哩哔哩_bilibili思路:输入:coins=[1,2,5],amount=11输出:3解释:11=5+5+11.确定dp数组以及下标的含义dp[j]:凑足总额为j所需钱币的最少个数为dp[j]2.确定递推公式
- 代码随想录训练营Day33:完全背包问题2
mooc666quq
代码随想录训练营打卡算法leetcodeC++学习动态规划
1.322零钱兑换与昨天的零钱兑换问题的区别主要不同点在于dp数组的含义,相同点都是属于组合问题。1.dp数组的含义:dp[j]:代表容量为j时候的最少零钱个数2.递推公式:dp[j]=min(dp[j],dp[j-coins[i]]+1);dp[j-coins[i]]+1=dp[j-weight[i]]+value[i],所以还是属于一个变式。因为题目要求的是最小个数,所以得取min函数。3.初
- 深入理解背包问题:从理论到实践
a.原味瓜子
C++算法人工智能
目录一、什么是背包问题?基本概念二、背包问题的常见类型1.0-1背包问题2.完全背包问题3.多重背包问题4.分数背包问题三、0-1背包问题的动态规划解法1.基本思路2.C++实现代码3.空间优化版本四、完全背包问题的解法1.基本思路2.C++实现代码五、背包问题的实际应用六、经典例题与解答例题1:分割等和子集(LeetCode416)例题2:目标和(LeetCode494)七、背包问题的优化技巧八
- 混合背包(01,多重,完全)
YouQian772
动态规划算法
题目描述有N种物品和一个容量是V的背包。物品一共有三类:第一类物品只能用1次(01背包);第二类物品可以用无限次(完全背包);第三类物品最多只能用si次(多重背包);每种体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔
- 代码随想录60期day41
qq_19555169
算法leetcode职场和发展
完全背包#include#includeintmain(){intn,bagWeight;intw,v;cin>>n>>bagWeight;vectorweight(n);vectorvalue(n);for(inti=0;i>weight[i]>>value[i];}vector>dp(n,vector(bagWeight+1,0));for(intj=weight[0];j&coins){in
- 动态规划3—01背包梳理
Le_ee
算法c++动态规划
一:问题解析有一个容量为W的背包,总共有N个物品,每个物品有两个属性,重量w[i[和价值v[i],需要选择一些物品放入背包,每个物品只能选择一次,使得在不超过背包容量的情况下,物品的总价值最大;与完全背包的不同:每个物品只能选择一次;二:二维dp数组实现思路:1.定义二维数组dp[i][j]:i表示在前i个物品中选择,j表示此时背包的容量为j,dp[i][j]表示此状态下,背包能获得的最大价值;2
- 【自用】0-1背包问题与完全背包问题的Java实现
旧故新长
代理模式
引言背包问题是计算机科学领域的一个经典优化问题,分为多种类型,其中最常见的是0-1背包问题和完全背包问题。这两种问题的核心在于如何在有限的空间内最大化收益,但它们之间存在一些关键的区别:0-1背包问题允许每个物品只能选择一次,而完全背包问题则允许无限次选取同一物品。本篇博客将分别介绍这两个问题的动态规划解法,并附带相应的Java代码实现。0-1背包问题问题描述假设你有一个背包,其最大承重能力为W千
- 自学动态规划——爬楼梯(加强版)
临沂堇
动态规划算法
爬楼梯(加强版)57.爬楼梯(第八期模拟笔试)(kamacoder.com)虽然看起来和完全背包没有什么关系,实际上还是有背包的影子的。首先,题目要求方法数量,那么就应该想到递推公式:dp[i]+=dp[i-w[i]],对比一下下面的公式,是不是也是这样呢?我们将能走的步数(1~m)当做物品和体积,将总阶梯数当做最大背包容量,构建成一个完全背包寻找方法的模型。显然,112和121是两种不同的方法,
- 常见dp问题的状态表示
BUG召唤师
动态规划算法
目录前言一、动态规划核心五步二、常见dp问题的状态表示1.斐波那契数列模型2.路径问题3.简单多状态dp问题4.子数组问题5.子串问题6.子序列问题7.回文串问题8.两个数组的dp问题9.01背包问题10.完全背包问题11.二维费用01背包问题12.排列问题总结前言解决dp问题的关键首先是确定状态表示,确定正确的状态表示,才能结合题目要求顺利推导出状态转移方程。但状态表示往往是根据经验定义的,下面
- 代码随想录算法训练营 Day35 动态规划Ⅲ 0-1背包问题
JK0x07
算法动态规划
动态规划背包问题(0-1背包问题)0-1背包:n个物品,每个物品只有一个完全背包:n种物品,每个物品有无限个多重背包:n种物品,每个物品个数不相同暴力解法场景题目类型给出表格,背包最大容量n,说怎么装利益最大化重量价值物品0115物品1320物品2430暴力解法就是穷举(回溯)当装满了背包统计价值再试试其他的,这样穷举所有可能情况,得出最佳结论动态规划思路Dp数组定义Dp说明dp[i][j]在[0
- 代码随想录算法训练营 Day38 动态规划Ⅵ 完全背包应用 多重背包
JK0x07
算法动态规划
动态规划组合与排列DP求组合数是外层遍历物品,内层遍历背包DP求排列数是外层遍历背包,内层遍历物品多重背包多重体现在多个0-1背包,一个物品是有限个的背包问题有N种物品和一个容量为V的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci,价值是Wi。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超过背包容量,且价值总和最大。多重背包和01背包是非常像的,为什么和01背包像呢?每件物品最多有
- 【蓝桥杯】01背包 完全背包 多重背包 模板及优化
遥感小萌新
蓝桥杯蓝桥杯算法职场和发展
01背包N,V=map(int,input().split())w=[0]*(N+1)#体积c=[0]*(N+1)#价格dp=[[0]*(V+1)foriinrange(N+1)]#dp[i][j]前i个物品空间j下最大价值foriinrange(1,N+1):w[i],c[i]=map(int,input().split())foriinrange(1,N+1):forjinrange(1,V+
- 代码随想录算法训练营第三十二天
写个博客
代码随想录打卡算法
LeetCode/卡码网题目:518.零钱兑换II377.组合总和Ⅳ790.多米诺和托米诺平铺(每日一题)57.爬楼梯(第八期模拟笔试)其他:今日总结往期打卡背包问题特点:滚动数组背包遍历顺序完全背包从小到大,即基于当前物品更新过的继续更新01背包从大到小,即基于上一物品更新物品内外层循环:求组合数外层for循环遍历物品,内层for遍历背包。(物品顺序固定,所以不会出现不同的排列)求排列数外层fo
- 动态规划(详解)
翻身的咸鱼ing
算法动态规划数据结构算法
动态规划一般可分为线性动规,区域动规,树形动规,背包动规四类。背包问题:01背包问题,完全背包问题,分组背包问题,二维背包等动态规划的一般解题步骤:明确「状态」->定义dp数组/函数的含义->明确「选择」->明确basecase。以Leetcode322为例先确定「状态」,也就是原问题和子问题中变化的变量。由于硬币数量无限,所以唯一的状态就是目标金额amount。然后确定dp函数的定义:当前的目标
- 【动态规划】背包问题(01背包,完全背包,多重背包,分组背包)
triticale
算法动态规划算法
01背包有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是viv_ivi,价值是wiw_iwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数viv_ivi,wiw_iwi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一个整数
- 动态规划算法:完全背包类问题
庐阳寒月
数据结构与算法算法动态规划数据结构C++
前言现在我们考虑下面的问题:(1)小明有一个背包,背包容积为v,有m种物品,其中第i种物品的价值为val[i],体积为t[i],每样物品有无限个,请问背包内物品总价值最大为多少?(2)小明有若干面值的硬币nums,小明需要买一个物品需要m元,小明想知道自己的硬币能否刚好凑够m元,如果可以,那么需要的最少硬币数量是多少?假设每种面值的硬币数量不做限制。分析这些问题我们发现,后两个问题仅需要一个结果,
- CCF CSP 第37次(2025.03)(2_机器人饲养指南_C++)
Dream it possible!
CCFCSP认证c++CCFCSPCSP
CCFCSP第37次(2025.03)(2_机器人饲养指南_C++)解题思路:思路一(完全背包):代码实现代码实现(思路一(完全背包)):时间限制:1.0秒空间限制:512MiB原题链接解题思路:思路一(完全背包):1、解题步骤拆分:①数据输入:第一行输入nm(int)。第二行输入m个整数A1,A2,…,Am代表一天内投喂不同苹果数的收益。②数据处理:通过分析此次题目是一个完全背包问题:每天投喂苹
- 完全背包问题DP详解
Nminem
算法背包问题dp
有N种物品和一个容量是V的背包,每种物品都有无限件可用。第i种物品的体积是vi,价值是wi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行两个整数vi,wi用空格隔开,分别表示第i种物品的体积和价值。输出格式输出一个整数,表示最大价值。数据范围:0、f[i-1][j-v
- 代码随想录训练营day37|52. 携带研究材料,518.零钱兑换II,377. 组合总和 Ⅳ,70. 爬楼梯
wwwgxd
算法c++动态规划
52.携带研究材料这是一个完全背包问题,就是每个物品可以无限放。在一维滚动数组的时候规定了遍历顺序是要从后往前的,就是因为不能多次放物体。所以这里能多次放物体只需要把遍历顺序改改就好了#include#includeusingnamespacestd;intmain(){intn,m;cin>>n>>m;std::vectorweight(n);std::vectorvalue(n);for(in
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- leetcode 279. Perfect Squares
洞阳
leetcodeleetcode算法完全背包问题动态规划
本题也是完全背包问题。并且本质上与第322题一模一样。要求的是装满背包最少需要多少个物品。与第322题一样,dp数组的初始化需要仔细考虑。详见leetcode322.CoinChange本题,给定整数n就相当于给定容量大小为n的背包。n只可能等于,1,4,9,...,这些完全平方数的和。相当于物品个数就是,物品重量是1,4,9,...,。第一版代码外层循环遍历物品,内层循环遍历背包容量。class
- 动态规划 (Dynamic Programming)
nuo534202
学习笔记动态规划算法c++
文章目录背包DP01背包完全背包多重背包混合背包背包DP01背包1.洛谷P2871[USACO07DEC]CharmBraceletS题目链接:洛谷P287101背包模板题,不过多解释。#includeusingnamespacestd;constexprintN=3500,M=13000;intn,m,w[N],d[N],dp[M];intmain(){ios::sync_with_stdio(
- VMware Workstation 11 或者 VMware Player 7安装MAC OS X 10.10 Yosemite
iwindyforest
vmwaremac os10.10workstationplayer
最近尝试了下VMware下安装MacOS 系统,
安装过程中发现网上可供参考的文章都是VMware Workstation 10以下, MacOS X 10.9以下的文章,
只能提供大概的思路, 但是实际安装起来由于版本问题, 走了不少弯路, 所以我尝试写以下总结, 希望能给有兴趣安装OSX的人提供一点帮助。
写在前面的话:
其实安装好后发现, 由于我的th
- 关于《基于模型驱动的B/S在线开发平台》源代码开源的疑虑?
deathwknight
JavaScriptjava框架
本人从学习Java开发到现在已有10年整,从一个要自学 java买成javascript的小菜鸟,成长为只会java和javascript语言的老菜鸟(个人邮箱:
[email protected])
一路走来,跌跌撞撞。用自己的三年多业余时间,瞎搞一个小东西(基于模型驱动的B/S在线开发平台,非MVC框架、非代码生成)。希望与大家一起分享,同时有许些疑虑,希望有人可以交流下
平台
- 如何把maven项目转成web项目
Kai_Ge
mavenMyEclipse
创建Web工程,使用eclipse ee创建maven web工程 1.右键项目,选择Project Facets,点击Convert to faceted from 2.更改Dynamic Web Module的Version为2.5.(3.0为Java7的,Tomcat6不支持). 如果提示错误,可能需要在Java Compiler设置Compiler compl
- 主管???
Array_06
工作
转载:http://www.blogjava.net/fastzch/archive/2010/11/25/339054.html
很久以前跟同事参加的培训,同事整理得很详细,必须得转!
前段时间,公司有组织中高阶主管及其培养干部进行了为期三天的管理训练培训。三天的课程下来,虽然内容较多,因对老师三天来的课程内容深有感触,故借着整理学习心得的机会,将三天来的培训课程做了一个
- python内置函数大全
2002wmj
python
最近一直在看python的document,打算在基础方面重点看一下python的keyword、Build-in Function、Build-in Constants、Build-in Types、Build-in Exception这四个方面,其实在看的时候发现整个《The Python Standard Library》章节都是很不错的,其中描述了很多不错的主题。先把Build-in Fu
- JSP页面通过JQUERY合并行
357029540
JavaScriptjquery
在写程序的过程中我们难免会遇到在页面上合并单元行的情况,如图所示
如果对于会的同学可能很简单,但是对没有思路的同学来说还是比较麻烦的,提供一下用JQUERY实现的参考代码
function mergeCell(){
var trs = $("#table tr");
&nb
- Java基础
冰天百华
java基础
学习函数式编程
package base;
import java.text.DecimalFormat;
public class Main {
public static void main(String[] args) {
// Integer a = 4;
// Double aa = (double)a / 100000;
// Decimal
- unix时间戳相互转换
adminjun
转换unix时间戳
如何在不同编程语言中获取现在的Unix时间戳(Unix timestamp)? Java time JavaScript Math.round(new Date().getTime()/1000)
getTime()返回数值的单位是毫秒 Microsoft .NET / C# epoch = (DateTime.Now.ToUniversalTime().Ticks - 62135
- 作为一个合格程序员该做的事
aijuans
程序员
作为一个合格程序员每天该做的事 1、总结自己一天任务的完成情况 最好的方式是写工作日志,把自己今天完成了什么事情,遇见了什么问题都记录下来,日后翻看好处多多
2、考虑自己明天应该做的主要工作 把明天要做的事情列出来,并按照优先级排列,第二天应该把自己效率最高的时间分配给最重要的工作
3、考虑自己一天工作中失误的地方,并想出避免下一次再犯的方法 出错不要紧,最重
- 由html5视频播放引发的总结
ayaoxinchao
html5视频video
前言
项目中存在视频播放的功能,前期设计是以flash播放器播放视频的。但是现在由于需要兼容苹果的设备,必须采用html5的方式来播放视频。我就出于兴趣对html5播放视频做了简单的了解,不了解不知道,水真是很深。本文所记录的知识一些浅尝辄止的知识,说起来很惭愧。
视频结构
本该直接介绍html5的<video>的,但鉴于本人对视频
- 解决httpclient访问自签名https报javax.net.ssl.SSLHandshakeException: sun.security.validat
bewithme
httpclient
如果你构建了一个https协议的站点,而此站点的安全证书并不是合法的第三方证书颁发机构所签发,那么你用httpclient去访问此站点会报如下错误
javax.net.ssl.SSLHandshakeException: sun.security.validator.ValidatorException: PKIX path bu
- Jedis连接池的入门级使用
bijian1013
redisredis数据库jedis
Jedis连接池操作步骤如下:
a.获取Jedis实例需要从JedisPool中获取;
b.用完Jedis实例需要返还给JedisPool;
c.如果Jedis在使用过程中出错,则也需要还给JedisPool;
packag
- 变与不变
bingyingao
不变变亲情永恒
变与不变
周末骑车转到了五年前租住的小区,曾经最爱吃的西北面馆、江西水饺、手工拉面早已不在,
各种店铺都换了好几茬,这些是变的。
三年前还很流行的一款手机在今天看起来已经落后的不像样子。
三年前还运行的好好的一家公司,今天也已经不复存在。
一座座高楼拔地而起,
- 【Scala十】Scala核心四:集合框架之List
bit1129
scala
Spark的RDD作为一个分布式不可变的数据集合,它提供的转换操作,很多是借鉴于Scala的集合框架提供的一些函数,因此,有必要对Scala的集合进行详细的了解
1. 泛型集合都是协变的,对于List而言,如果B是A的子类,那么List[B]也是List[A]的子类,即可以把List[B]的实例赋值给List[A]变量
2. 给变量赋值(注意val关键字,a,b
- Nested Functions in C
bookjovi
cclosure
Nested Functions 又称closure,属于functional language中的概念,一直以为C中是不支持closure的,现在看来我错了,不过C标准中是不支持的,而GCC支持。
既然GCC支持了closure,那么 lexical scoping自然也支持了,同时在C中label也是可以在nested functions中自由跳转的
- Java-Collections Framework学习与总结-WeakHashMap
BrokenDreams
Collections
总结这个类之前,首先看一下Java引用的相关知识。Java的引用分为四种:强引用、软引用、弱引用和虚引用。
强引用:就是常见的代码中的引用,如Object o = new Object();存在强引用的对象不会被垃圾收集
- 读《研磨设计模式》-代码笔记-解释器模式-Interpret
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 解释器(Interpreter)模式的意图是可以按照自己定义的组合规则集合来组合可执行对象
*
* 代码示例实现XML里面1.读取单个元素的值 2.读取单个属性的值
* 多
- After Effects操作&快捷键
cherishLC
After Effects
1、快捷键官方文档
中文版:https://helpx.adobe.com/cn/after-effects/using/keyboard-shortcuts-reference.html
英文版:https://helpx.adobe.com/after-effects/using/keyboard-shortcuts-reference.html
2、常用快捷键
- Maven 常用命令
crabdave
maven
Maven 常用命令
mvn archetype:generate
mvn install
mvn clean
mvn clean complie
mvn clean test
mvn clean install
mvn clean package
mvn test
mvn package
mvn site
mvn dependency:res
- shell bad substitution
daizj
shell脚本
#!/bin/sh
/data/script/common/run_cmd.exp 192.168.13.168 "impala-shell -islave4 -q 'insert OVERWRITE table imeis.${tableName} select ${selectFields}, ds, fnv_hash(concat(cast(ds as string), im
- Java SE 第二讲(原生数据类型 Primitive Data Type)
dcj3sjt126com
java
Java SE 第二讲:
1. Windows: notepad, editplus, ultraedit, gvim
Linux: vi, vim, gedit
2. Java 中的数据类型分为两大类:
1)原生数据类型 (Primitive Data Type)
2)引用类型(对象类型) (R
- CGridView中实现批量删除
dcj3sjt126com
PHPyii
1,CGridView中的columns添加
array(
'selectableRows' => 2,
'footer' => '<button type="button" onclick="GetCheckbox();" style=&
- Java中泛型的各种使用
dyy_gusi
java泛型
Java中的泛型的使用:1.普通的泛型使用
在使用类的时候后面的<>中的类型就是我们确定的类型。
public class MyClass1<T> {//此处定义的泛型是T
private T var;
public T getVar() {
return var;
}
public void setVa
- Web开发技术十年发展历程
gcq511120594
Web浏览器数据挖掘
回顾web开发技术这十年发展历程:
Ajax
03年的时候我上六年级,那时候网吧刚在小县城的角落萌生。传奇,大话西游第一代网游一时风靡。我抱着试一试的心态给了网吧老板两块钱想申请个号玩玩,然后接下来的一个小时我一直在,注,册,账,号。
彼时网吧用的512k的带宽,注册的时候,填了一堆信息,提交,页面跳转,嘣,”您填写的信息有误,请重填”。然后跳转回注册页面,以此循环。我现在时常想,如果当时a
- openSession()与getCurrentSession()区别:
hetongfei
javaDAOHibernate
来自 http://blog.csdn.net/dy511/article/details/6166134
1.getCurrentSession创建的session会和绑定到当前线程,而openSession不会。
2. getCurrentSession创建的线程会在事务回滚或事物提交后自动关闭,而openSession必须手动关闭。
这里getCurrentSession本地事务(本地
- 第一章 安装Nginx+Lua开发环境
jinnianshilongnian
nginxluaopenresty
首先我们选择使用OpenResty,其是由Nginx核心加很多第三方模块组成,其最大的亮点是默认集成了Lua开发环境,使得Nginx可以作为一个Web Server使用。借助于Nginx的事件驱动模型和非阻塞IO,可以实现高性能的Web应用程序。而且OpenResty提供了大量组件如Mysql、Redis、Memcached等等,使在Nginx上开发Web应用更方便更简单。目前在京东如实时价格、秒
- HSQLDB In-Process方式访问内存数据库
liyonghui160com
HSQLDB一大特色就是能够在内存中建立数据库,当然它也能将这些内存数据库保存到文件中以便实现真正的持久化。
先睹为快!
下面是一个In-Process方式访问内存数据库的代码示例:
下面代码需要引入hsqldb.jar包 (hsqldb-2.2.8)
import java.s
- Java线程的5个使用技巧
pda158
java数据结构
Java线程有哪些不太为人所知的技巧与用法? 萝卜白菜各有所爱。像我就喜欢Java。学无止境,这也是我喜欢它的一个原因。日常
工作中你所用到的工具,通常都有些你从来没有了解过的东西,比方说某个方法或者是一些有趣的用法。比如说线程。没错,就是线程。或者确切说是Thread这个类。当我们在构建高可扩展性系统的时候,通常会面临各种各样的并发编程的问题,不过我们现在所要讲的可能会略有不同。
- 开发资源大整合:编程语言篇——JavaScript(1)
shoothao
JavaScript
概述:本系列的资源整合来自于github中各个领域的大牛,来收藏你感兴趣的东西吧。
程序包管理器
管理javascript库并提供对这些库的快速使用与打包的服务。
Bower - 用于web的程序包管理。
component - 用于客户端的程序包管理,构建更好的web应用程序。
spm - 全新的静态的文件包管
- 避免使用终结函数
vahoa.ma
javajvmC++
终结函数(finalizer)通常是不可预测的,常常也是很危险的,一般情况下不是必要的。使用终结函数会导致不稳定的行为、更差的性能,以及带来移植性问题。不要把终结函数当做C++中的析构函数(destructors)的对应物。
我自己总结了一下这一条的综合性结论是这样的:
1)在涉及使用资源,使用完毕后要释放资源的情形下,首先要用一个显示的方