- AI人工智能领域知识图谱在文本分类中的应用技巧
AI天才研究院
AI大模型企业级应用开发实战人工智能知识图谱分类ai
AI人工智能领域知识图谱在文本分类中的应用技巧关键词:知识图谱、文本分类、图神经网络、实体关系抽取、深度学习、自然语言处理、特征融合摘要:本文深入探讨了知识图谱在文本分类任务中的应用技巧。我们将从知识图谱的基本概念出发,详细分析如何将结构化知识融入传统文本分类流程,介绍最新的图神经网络方法,并通过实际案例展示知识增强型文本分类系统的构建过程。文章特别关注知识表示学习与文本特征的融合策略,以及在不同
- NLP_知识图谱_大模型——个人学习记录
macken9999
自然语言处理知识图谱大模型自然语言处理知识图谱学习
1.自然语言处理、知识图谱、对话系统三大技术研究与应用https://github.com/lihanghang/NLP-Knowledge-Graph深度学习-自然语言处理(NLP)-知识图谱:知识图谱构建流程【本体构建、知识抽取(实体抽取、关系抽取、属性抽取)、知识表示、知识融合、知识存储】-元気森林-博客园https://www.cnblogs.com/-402/p/16529422.htm
- 提示词工程在实体关系抽取中的创新
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
1.5概念结构与核心要素组成在深入探讨提示词工程在实体关系抽取中的应用之前,我们需要对其概念结构与核心要素组成有一个清晰的理解。这一部分将介绍提示词工程的基本框架,以及实体关系抽取的关键技术。提示词工程的基本框架提示词工程(PromptEngineering)是指利用人工智能技术和自然语言处理方法,设计并优化用于训练语言模型的输入提示(prompt),以达到特定任务目标的过程。其核心框架包括以下几
- 规范化信息抽取:原理流程与Python实战
闲人编程
pythonNLPNEREE信息抽取pythonRE模型角色联合
目录怎样规范化实现信息抽取:原理、流程与Python实战一、引言二、信息抽取系统架构与流程2.1总体架构2.2主要组件三、核心算法与模型原理3.1命名实体识别(NER)3.1.1序列标注模型(BiLSTM-CRF)3.2关系抽取(RE)3.2.1基于依存路径的卷积网络(DepCNN)3.3事件抽取(EE)四、规范化流程可视化五、端到端Python实现示例5.1环境依赖5.2文本预处理模块5.3NE
- 从零开始构建程序员菜谱知识图谱:LightRAG实战指南
CarlowZJ
RAG+知识图谱AI开发知识图谱人工智能LightRAG
目录摘要知识图谱基础核心概念构建知识图谱的意义构建程序员菜谱知识图谱的步骤1.数据收集2.实体识别与关系抽取3.知识融合4.图谱存储与查询使用LightRAG构建知识图谱环境搭建数据收集与预处理实体识别与关系抽取图谱存储与查询应用场景菜谱推荐菜谱优化注意事项数据质量问题实体消歧性能优化架构图与流程图架构图流程图知识脑图甘特图饼图总结准备数据:把里面关于做饭的方法文件全部都上传上去并解析。编辑检索效
- 知识图谱系列(3):构建方法与流程
程序员查理
#知识图谱知识图谱人工智能架构数据结构AI学术
1.引言在前两篇文章中,我们分别介绍了知识图谱的基础概念与发展历程,以及知识图谱的技术架构与组成要素。了解了这些基础知识后,我们需要进一步探讨如何构建一个高质量的知识图谱,这是知识图谱应用的关键步骤。知识图谱的构建是一个复杂的系统工程,涉及多个环节和技术,包括知识获取、实体识别、关系抽取、知识融合和质量评估等。每个环节都有其特定的方法和挑战,需要综合运用自然语言处理、机器学习、信息检索等多种技术。
- 智能客服系统中长尾问题的知识库构建与解决方案
北辰alk
AI网络
文章目录1.长尾问题概述与挑战1.1什么是长尾问题1.2长尾问题的特点1.3传统解决方案的不足2.知识库系统架构设计2.1整体架构2.2核心组件3.知识库构建具体步骤3.1知识收集与挖掘3.1.1多源数据采集3.1.2长尾问题挖掘算法3.2知识结构化处理3.2.1知识图谱构建流程3.2.2实体关系抽取示例3.3知识存储方案3.3.1混合存储结构3.3.2知识图谱片段4.长尾问题解决方案4.1分层处
- 知识图谱、对话系统、协同过滤
heine162
知识图谱人工智能
1.R-BERT用于知识图谱中的关系抽取,关系抽取分为pipeline抽取和联合抽取。pipeline抽取是先试用序列标注模型提取实体,然后实体之间做文本分类任务提取他们之间的关系。联合抽取是文本送入模型同时抽取实体+关系。三元组是知识图谱通用表示方式:实体-关系-实体,实体-属性-属性值,实体-标签-标签值,rbert可以训练实体-关系-实体。loader:#-*-coding:utf-8-*-
- PaddleNLP UIE 通过OCR识别银行回执信息
冲上云霄的Jayden
AIocr银行回执PaddleNLPPaddleUIE信息提取NLP
概述UIE(UniversalInformationExtraction):YaojieLu等人在ACL-2022中提出了通用信息抽取统一框架UIE。该框架实现了实体抽取、关系抽取、事件抽取、情感分析等任务的统一建模,并使得不同任务间具备良好的迁移和泛化能力。为了方便大家使用UIE的强大能力,PaddleNLP借鉴该论文的方法,基于ERNIE3.0知识增强预训练模型,训练并开源了首个中文通用信息抽
- 智能知识图谱:大模型如何实现高效实体识别与关系抽取
python大模型人工智能
摘要知识图谱(KnowledgeGraph,KG)是人工智能领域的重要技术之一,广泛应用于搜索引擎、推荐系统、问答系统等场景。然而,传统知识图谱构建依赖大量人工标注,成本高且效率低。近年来,随着大模型(如GPT、BERT等)的快速发展,利用大模型自动化生成知识图谱成为可能。本文将详细讲解如何利用大模型实现知识图谱的自动化构建,包括实体识别、关系抽取和图谱更新,并提供可运行的示例代码和相关配图。引言
- SciER:首个大规模科学文档中的实体和关系抽取数据集
数据集
2024-10-28,为科学文档中的实体和关系抽取领域带来了突破,提供了一个包含106篇完整科学出版物、超过24,000个实体和12,000个关系的大规模数据集,这对于构建科学知识图谱和促进科学信息抽取技术的发展具有重要意义。数据集地址:SciER|科学信息提取数据集|人工智能数据集一、研究背景:在科学文档中,实体(如数据集、方法、任务)和它们之间的关系对于理解科学发现和推动研究进展至关重要。然而
- 什么是预训练?
卡卡大怪兽
自然语言处理
一、介绍预训练模型诞生背景:对于某种特殊任务只存在少量的相关训练数据,以至于模型不能从中学习到有用的规律(标注资源稀缺,无大数据支持)举例:想对一批法律领域的文件进行关系抽取,就需要投入大量的精力(意味着时间和金钱的大量投入)在法律领域的文件中进行关系抽取的标注,然后将标注好的数据“喂”给模型进行训练。但是即使是标注了几百万条这样的数据(实际情况中,在一个领域内标注几百万条几乎不可能,因为成本非常
- Python中LLM的知识图谱构建:动态更新与推理
二进制独立开发
GenAI与Python非纯粹GenAIpython知识图谱开发语言自然语言处理人工智能分布式机器学习
文章目录引言1.知识图谱的基本概念1.1知识图谱的定义1.2知识图谱的构建流程2.利用LLM进行知识抽取2.1实体识别2.2关系抽取2.3属性抽取3.知识融合3.1实体对齐3.2冲突消解4.知识存储5.知识推理5.1规则推理5.2基于LLM的推理6.动态更新6.1增量更新6.2实时更新7.结论引言随着人工智能技术的飞速发展,知识图谱(KnowledgeGraph,KG)作为一种结构化的知识表示方法
- 基于 HanLP 的句子结构分析与关系抽取
梦落青云
知识图谱javaHanLP
一、引言自然语言处理(NLP)是人工智能领域的重要分支,旨在让计算机理解和处理人类语言。句子结构分析和关系抽取是NLP中的关键任务,它们可以帮助我们理解句子的语法结构和语义关系。HanLP是一款功能强大的中文自然语言处理工具包,提供了丰富的功能,包括分词、词性标注、依存句法分析等。本文将介绍如何使用HanLP进行句子结构分析与关系抽取。二、HanLP简介HanLP是由汉语言技术实验室开发的开源中文
- python 命名实体识别_Python NLTK学习11(命名实体识别和关系抽取)
weixin_39630762
python命名实体识别
PythonNLTK学习11(命名实体识别和关系抽取)发表于:2017年7月27日阅读:18262除特别注明外,本站所有文章均为小杰Code原创本系列博客为学习《用Python进行自然语言处理》一书的学习笔记。命名实体识别命名实体识别(NER)系统的目标是识别所有文字提及的命名实体。可以分解成两个子任务:确定NE的边界和确定其类型。命名实体识别非常适用于基于分类器类型的方法来处理的任务。NLTK有
- NLP学习——信息抽取
P-ShineBeam
NLP基础学习
信息抽取自动从半结构或无结构的文本中抽取出结构化信息的任务。常见的信息抽取任务有三类:实体抽取、关系抽取、事件抽取。1、实体抽取从一段文本中抽取出文本内容并识别为预定义的类别。实体抽取任务中的复杂问题:重复嵌套,原文中多个实体之间共享片段不连续,一个实体由多个不连续片段组成2、关系抽取从文本中抽取一对实体和预定义的关系类型。传统的关系抽取任务实现方案是先进行实体抽取,再输入头尾实体与原文进行关系分
- 【无标题】
Komorebi_9999
知识图谱问答系统自然语言处理
要构建一个基于知识图谱的问答系统,你需要进行以下工作:知识图谱构建:数据采集:从各种来源(如公开数据库、API、网页等)收集与你的领域相关的数据。数据清洗和预处理:清洗数据,去除重复、错误或不相关的信息,对数据进行归一化、标准化处理。实体识别和关系抽取:从数据中识别出实体(如人、地点、概念等)和它们之间的关系。构建图谱:将实体和关系组织成图谱结构,通常使用图数据库来存储。自然语言处理(NLP):分
- windows下GitHub中.sh文件下载的问题解决方案
Anpedestrian
NLP
一些github中的项目为了加快开发者的下载速度,一般不会将项目的数据集与项目绑定到一起,一般都是以.sh后缀的文件格式与项目绑定。比如实体关系抽取项目中的数据集下载问题:对于.sh格式的文件安装需要sh命令,而sh指令是git系统下的操作指令。Git是分布式版本控制系统,那么它就没有中央服务器的,每个人的电脑就是一个完整的版本库,这样,工作的时候就不需要联网了,因为版本都是在自己的电脑上。A.首
- 低资源学习与知识图谱:构建与应用
cooldream2009
AI技术知识图谱知识图谱人工智能低资源
目录前言1低资源学习方法1.1数据增强1.2特征增强1.3模型增强2低资源知识图谱构建与推理2.1元关系学习2.2对抗学习2.3零样本关系抽取2.4零样本学习与迁移学习2.5零样本学习与辅助信息3基于知识图谱的低资源学习应用3.1零样本图像分类3.2知识增强的零样本学习3.3语义与知识信息的利用结语前言在当今人工智能领域,低资源学习成为一个备受关注的话题,尤其是在少样本学习和零样本学习方面。这种学
- 【医学知识图谱 自动补全 关系抽取】生成模型 + 医学知识图谱 = 发现三元组隐藏的关系实体对
Debroon
医学大模型:个性化精准安全可控知识图谱人工智能
生成模型+医学知识图谱=发现三元组新关系实体对提出背景问题:如何自动发现并生成医疗领域中未被标注的实体关系三元组?CRVAE模型提出背景论文:https://dl.acm.org/doi/pdf/10.1145/3219819.3220010以条件关系变分自编码器(CRVAE)模型为基础,解决关系医疗实体对发现问题,并生成新的、有意义的医疗实体对。尽管有些疾病与症状之间的关系已经被广泛记录,但仍然
- NER
zelda2333
基操:超详细保姆级讲解&提供代码:基于深度学习的命名实体识别与关系抽取值得一看的命名实体识别的总结:中文命名实体识别总结师兄给的教程:GithubChineseNER针对教程讲解的文章:用深度学习做命名实体识别(附代码)
- CRF条件随机场学习记录
V丶Chao
深度学习安全研究-威胁情报学习
阅读建议仔细阅读书[1]对应的序列标注章节,理解该方法面向的问题以及相关背景,然后理解基础的概念。引言威胁情报挖掘的相关论文中,均涉及到两部分任务:命名实体识别(NamedEntityRecognition,NER)和关系抽取,大多数网安实现NER的方法,采用比较多的方法包含:BiLstm+CRF或者Bert+CRF。其中条件随机场(conditionalrandomfields,CRF),这个模
- 学习笔记CB003:分块、标记、关系抽取、文法特征结构
利炳根
分块,根据句子的词和词性,按照规则组织合分块,分块代表实体。常见实体,组织、人员、地点、日期、时间。名词短语分块(NP-chunking),通过词性标记、规则识别,通过机器学习方法识别。介词短语(PP)、动词短语(VP)、句子(S)。分块标记,IOB标记,I(inside,内部)、O(outside,外部)、B(begin,开始)。树结构存储分块。多级分块,多重分块方法。级联分块。关系抽取,找出实
- Deepdive关系抽取:特征源码分析及优化加快信息提取
weixin_42001089
人工智能机器学习DDLIBNLPdeepdive
前言本篇不是Deepdive入门教程,而是对其一些源码细节进行了解读,换句话说要深入到内部去看看其具体是怎么做的,所以看本篇的前提是假设读者已经大概清楚了deepdive的使用流程,如果不是很熟悉,或是第一次使用建议先去看一下入门教程。本篇先是分析特征方面的源码,接着是实践部分,即使用ltp替换默认的斯坦福NLP信息抽取部分进而可优化该部分到数秒内,最后简单说一下其模型方面的问题以及其它补充其实关
- 实体关系抽取与属性补全的技术浅析
cooldream2009
NLP知识AI技术知识图谱实体关系抽取关系抽取
目录前言1.实体关系抽取2实体关系抽取的方法2.1基于模板的方法2.2基于监督学习的关系抽取2.3基于深度学习的关系抽取2.4基于预训练语言模型的关系抽取3属性补全3.1属性补全任务简介3.1抽取式属性补全3.2生成式属性补全4未来发展趋势结语前言在信息爆炸时代,文本数据蕴含着丰富的知识,但要将这些知识整理成结构化的形式,关系抽取和属性补全成为至关重要的任务。本文将深入探讨实体关系抽取的任务定义、
- 面向中国企业关系抽取的双向门控递归单元神经网络
精分天秤座的mystery
自然语言处理神经网络知识图谱人工智能
面向中国企业关系抽取的双向门控递归单元神经网络论文原文:论文原文摘要:为了帮助金融从业人员有效识别高风险企业、法人或股东,国内外学者构建了风险预警的企业知识图谱。从财经新闻等非结构化数据中提取企业关系是构建企业知识图的重要手段,但其数据结构的不规则性和处理工具的匮乏给关系提取带来了挑战。针对这一问题,本文提出了SDP-BGRU模型,从非结构化数据中提取企业关系,将企业关系提取视为一个分类问题。该模
- 知识图谱技术综述:构建智能信息网络的关键元素
cooldream2009
知识图谱AI技术知识图谱人工智能
目录前言1知识图谱表示:有向标记图1.1节点表示1.2边的表示1.3知识图谱的动态性2知识图谱存储与查询:图数据存储2.1关系图存储技术2.2图查询语言2.3数据存储的优化3知识抽取:从多结构数据中抽取知识3.1概念抽取3.2实体识别3.3关系抽取3.4事件抽取4知识融合:多源数据的统一命名空间4.1实体对齐4.2本体映射4.3概念匹配5知识推理:基于符号和图结构的推理5.1基于符号的推理5.2基
- 知识抽取-事件抽取
Jarkata
此文为转载,原文链接:知识抽取-事件抽取-徐阿衡的文章-知乎https://zhuanlan.zhihu.com/p/50903358接上一篇知识抽取-实体及关系抽取。事件是促使事情状态和关系改变的条件[Donget.al.,2010]。目前已存在的知识资源(如维基百科等)所描述实体及实体间的关系大多是静态的,而事件能描述粒度更大的、动态的、结构化的知识,是现有知识资源的重要补充。与[关系抽取]相
- 用通俗易懂的方式讲解:实体关系抽取入门教程
深度学习算法与自然语言处理
机器学习自然语言处理人工智能深度学习
信息抽取主要包括3项子任务:实体抽取、关系抽取和事件抽取,而关系抽取是信息抽取领域的核心任务和重要环节。实体关系抽取的主要目标是从自然语言文本中识别并判定实体对之间存在的特定关系。本文为《实体关系抽取方法研究综述》论文的阅读笔记。文章目录技术提升关系抽取定义关系抽取评价指标实体关系抽取方法基于规则的关系抽取方法基于词典驱动的关系抽取方法基于机器学习的抽取方法基于深度学习的关系抽取方法流水线学习联合
- IT行业都有哪些职位,初学者该如何选择
活字印刷
互联网行业的薪资水准相对较高,刚入行一个月,半年,或者一年超过其他行业薪资很正常。那么,互联网行业究竟有哪些职位呢,又分别适合哪些传统行业转型?1.产品2.UI3.CSS4.JS5.后端(Java/php/python)6.DBA(mysql/oracle)7.运维(OP)8.测试(QA)9.算法(分类/聚类/关系抽取/实体识别)10.搜索(Lucene/Solr/elasticSearch)11
- 集合框架
天子之骄
java数据结构集合框架
集合框架
集合框架可以理解为一个容器,该容器主要指映射(map)、集合(set)、数组(array)和列表(list)等抽象数据结构。
从本质上来说,Java集合框架的主要组成是用来操作对象的接口。不同接口描述不同的数据类型。
简单介绍:
Collection接口是最基本的接口,它定义了List和Set,List又定义了LinkLi
- Table Driven(表驱动)方法实例
bijian1013
javaenumTable Driven表驱动
实例一:
/**
* 驾驶人年龄段
* 保险行业,会对驾驶人的年龄做年龄段的区分判断
* 驾驶人年龄段:01-[18,25);02-[25,30);03-[30-35);04-[35,40);05-[40,45);06-[45,50);07-[50-55);08-[55,+∞)
*/
public class AgePeriodTest {
//if...el
- Jquery 总结
cuishikuan
javajqueryAjaxWebjquery方法
1.$.trim方法用于移除字符串头部和尾部多余的空格。如:$.trim(' Hello ') // Hello2.$.contains方法返回一个布尔值,表示某个DOM元素(第二个参数)是否为另一个DOM元素(第一个参数)的下级元素。如:$.contains(document.documentElement, document.body); 3.$
- 面向对象概念的提出
麦田的设计者
java面向对象面向过程
面向对象中,一切都是由对象展开的,组织代码,封装数据。
在台湾面向对象被翻译为了面向物件编程,这充分说明了,这种编程强调实体。
下面就结合编程语言的发展史,聊一聊面向过程和面向对象。
c语言由贝尔实
- linux网口绑定
被触发
linux
刚在一台IBM Xserver服务器上装了RedHat Linux Enterprise AS 4,为了提高网络的可靠性配置双网卡绑定。
一、环境描述
我的RedHat Linux Enterprise AS 4安装双口的Intel千兆网卡,通过ifconfig -a命令看到eth0和eth1两张网卡。
二、双网卡绑定步骤:
2.1 修改/etc/sysconfig/network
- XML基础语法
肆无忌惮_
xml
一、什么是XML?
XML全称是Extensible Markup Language,可扩展标记语言。很类似HTML。XML的目的是传输数据而非显示数据。XML的标签没有被预定义,你需要自行定义标签。XML被设计为具有自我描述性。是W3C的推荐标准。
二、为什么学习XML?
用来解决程序间数据传输的格式问题
做配置文件
充当小型数据库
三、XML与HTM
- 为网页添加自己喜欢的字体
知了ing
字体 秒表 css
@font-face {
font-family: miaobiao;//定义字体名字
font-style: normal;
font-weight: 400;
src: url('font/DS-DIGI-e.eot');//字体文件
}
使用:
<label style="font-size:18px;font-famil
- redis范围查询应用-查找IP所在城市
矮蛋蛋
redis
原文地址:
http://www.tuicool.com/articles/BrURbqV
需求
根据IP找到对应的城市
原来的解决方案
oracle表(ip_country):
查询IP对应的城市:
1.把a.b.c.d这样格式的IP转为一个数字,例如为把210.21.224.34转为3524648994
2. select city from ip_
- 输入两个整数, 计算百分比
alleni123
java
public static String getPercent(int x, int total){
double result=(x*1.0)/(total*1.0);
System.out.println(result);
DecimalFormat df1=new DecimalFormat("0.0000%");
- 百合——————>怎么学习计算机语言
百合不是茶
java 移动开发
对于一个从没有接触过计算机语言的人来说,一上来就学面向对象,就算是心里上面接受的了,灵魂我觉得也应该是跟不上的,学不好是很正常的现象,计算机语言老师讲的再多,你在课堂上面跟着老师听的再多,我觉得你应该还是学不会的,最主要的原因是你根本没有想过该怎么来学习计算机编程语言,记得大一的时候金山网络公司在湖大招聘我们学校一个才来大学几天的被金山网络录取,一个刚到大学的就能够去和
- linux下tomcat开机自启动
bijian1013
tomcat
方法一:
修改Tomcat/bin/startup.sh 为:
export JAVA_HOME=/home/java1.6.0_27
export CLASSPATH=$CLASSPATH:$JAVA_HOME/lib/tools.jar:$JAVA_HOME/lib/dt.jar:.
export PATH=$JAVA_HOME/bin:$PATH
export CATALINA_H
- spring aop实例
bijian1013
javaspringAOP
1.AdviceMethods.java
package com.bijian.study.spring.aop.schema;
public class AdviceMethods {
public void preGreeting() {
System.out.println("--how are you!--");
}
}
2.beans.x
- [Gson八]GsonBuilder序列化和反序列化选项enableComplexMapKeySerialization
bit1129
serialization
enableComplexMapKeySerialization配置项的含义
Gson在序列化Map时,默认情况下,是调用Key的toString方法得到它的JSON字符串的Key,对于简单类型和字符串类型,这没有问题,但是对于复杂数据对象,如果对象没有覆写toString方法,那么默认的toString方法将得到这个对象的Hash地址。
GsonBuilder用于
- 【Spark九十一】Spark Streaming整合Kafka一些值得关注的问题
bit1129
Stream
包括Spark Streaming在内的实时计算数据可靠性指的是三种级别:
1. At most once,数据最多只能接受一次,有可能接收不到
2. At least once, 数据至少接受一次,有可能重复接收
3. Exactly once 数据保证被处理并且只被处理一次,
具体的多读几遍http://spark.apache.org/docs/lates
- shell脚本批量检测端口是否被占用脚本
ronin47
#!/bin/bash
cat ports |while read line
do#nc -z -w 10 $line
nc -z -w 2 $line 58422>/dev/null2>&1if[ $?-eq 0]then
echo $line:ok
else
echo $line:fail
fi
done
这里的ports 既可以是文件
- java-2.设计包含min函数的栈
bylijinnan
java
具体思路参见:http://zhedahht.blog.163.com/blog/static/25411174200712895228171/
import java.util.ArrayList;
import java.util.List;
public class MinStack {
//maybe we can use origin array rathe
- Netty源码学习-ChannelHandler
bylijinnan
javanetty
一般来说,“有状态”的ChannelHandler不应该是“共享”的,“无状态”的ChannelHandler则可“共享”
例如ObjectEncoder是“共享”的, 但 ObjectDecoder 不是
因为每一次调用decode方法时,可能数据未接收完全(incomplete),
它与上一次decode时接收到的数据“累计”起来才有可能是完整的数据,是“有状态”的
p
- java生成随机数
cngolon
java
方法一:
/**
* 生成随机数
* @author
[email protected]
* @return
*/
public synchronized static String getChargeSequenceNum(String pre){
StringBuffer sequenceNum = new StringBuffer();
Date dateTime = new D
- POI读写海量数据
ctrain
海量数据
import java.io.FileOutputStream;
import java.io.OutputStream;
import org.apache.poi.xssf.streaming.SXSSFRow;
import org.apache.poi.xssf.streaming.SXSSFSheet;
import org.apache.poi.xssf.streaming
- mysql 日期格式化date_format详细使用
daizj
mysqldate_format日期格式转换日期格式化
日期转换函数的详细使用说明
DATE_FORMAT(date,format) Formats the date value according to the format string. The following specifiers may be used in the format string. The&n
- 一个程序员分享8年的开发经验
dcj3sjt126com
程序员
在中国有很多人都认为IT行为是吃青春饭的,如果过了30岁就很难有机会再发展下去!其实现实并不是这样子的,在下从事.NET及JAVA方面的开发的也有8年的时间了,在这里在下想凭借自己的亲身经历,与大家一起探讨一下。
明确入行的目的
很多人干IT这一行都冲着“收入高”这一点的,因为只要学会一点HTML, DIV+CSS,要做一个页面开发人员并不是一件难事,而且做一个页面开发人员更容
- android欢迎界面淡入淡出效果
dcj3sjt126com
android
很多Android应用一开始都会有一个欢迎界面,淡入淡出效果也是用得非常多的,下面来实现一下。
主要代码如下:
package com.myaibang.activity;
import android.app.Activity;import android.content.Intent;import android.os.Bundle;import android.os.CountDown
- linux 复习笔记之常见压缩命令
eksliang
tar解压linux系统常见压缩命令linux压缩命令tar压缩
转载请出自出处:http://eksliang.iteye.com/blog/2109693
linux中常见压缩文件的拓展名
*.gz gzip程序压缩的文件
*.bz2 bzip程序压缩的文件
*.tar tar程序打包的数据,没有经过压缩
*.tar.gz tar程序打包后,并经过gzip程序压缩
*.tar.bz2 tar程序打包后,并经过bzip程序压缩
*.zi
- Android 应用程序发送shell命令
gqdy365
android
项目中需要直接在APP中通过发送shell指令来控制lcd灯,其实按理说应该是方案公司在调好lcd灯驱动之后直接通过service送接口上来给APP,APP调用就可以控制了,这是正规流程,但我们项目的方案商用的mtk方案,方案公司又没人会改,只调好了驱动,让应用程序自己实现灯的控制,这不蛋疼嘛!!!!
发就发吧!
一、关于shell指令:
我们知道,shell指令是Linux里面带的
- java 无损读取文本文件
hw1287789687
读取文件无损读取读取文本文件charset
java 如何无损读取文本文件呢?
以下是有损的
@Deprecated
public static String getFullContent(File file, String charset) {
BufferedReader reader = null;
if (!file.exists()) {
System.out.println("getFull
- Firebase 相关文章索引
justjavac
firebase
Awesome Firebase
最近谷歌收购Firebase的新闻又将Firebase拉入了人们的视野,于是我做了这个 github 项目。
Firebase 是一个数据同步的云服务,不同于 Dropbox 的「文件」,Firebase 同步的是「数据」,服务对象是网站开发者,帮助他们开发具有「实时」(Real-Time)特性的应用。
开发者只需引用一个 API 库文件就可以使用标准 RE
- C++学习重点
lx.asymmetric
C++笔记
1.c++面向对象的三个特性:封装性,继承性以及多态性。
2.标识符的命名规则:由字母和下划线开头,同时由字母、数字或下划线组成;不能与系统关键字重名。
3.c++语言常量包括整型常量、浮点型常量、布尔常量、字符型常量和字符串性常量。
4.运算符按其功能开以分为六类:算术运算符、位运算符、关系运算符、逻辑运算符、赋值运算符和条件运算符。
&n
- java bean和xml相互转换
q821424508
javabeanxmlxml和bean转换java bean和xml转换
这几天在做微信公众号
做的过程中想找个java bean转xml的工具,找了几个用着不知道是配置不好还是怎么回事,都会有一些问题,
然后脑子一热谢了一个javabean和xml的转换的工具里,自己用着还行,虽然有一些约束吧 ,
还是贴出来记录一下
顺便你提一下下,这个转换工具支持属性为集合、数组和非基本属性的对象。
packag
- C 语言初级 位运算
1140566087
位运算c
第十章 位运算 1、位运算对象只能是整形或字符型数据,在VC6.0中int型数据占4个字节 2、位运算符: 运算符 作用 ~ 按位求反 << 左移 >> 右移 & 按位与 ^ 按位异或 | 按位或 他们的优先级从高到低; 3、位运算符的运算功能: a、按位取反: ~01001101 = 101
- 14点睛Spring4.1-脚本编程
wiselyman
spring4
14.1 Scripting脚本编程
脚本语言和java这类静态的语言的主要区别是:脚本语言无需编译,源码直接可运行;
如果我们经常需要修改的某些代码,每一次我们至少要进行编译,打包,重新部署的操作,步骤相当麻烦;
如果我们的应用不允许重启,这在现实的情况中也是很常见的;
在spring中使用脚本编程给上述的应用场景提供了解决方案,即动态加载bean;
spring支持脚本