- TensorFlow深度学习实战——DCGAN详解与实现
盼小辉丶
深度学习tensorflow生成对抗网络
TensorFlow深度学习实战——DCGAN详解与实现0.前言1.DCGAN架构2.构建DCGAN生成手写数字图像2.1生成器与判别器架构2.2构建DCGAN相关链接0.前言深度卷积生成对抗网络(DeepConvolutionalGenerativeAdversarialNetwork,DCGAN)是一种基于生成对抗网络(GenerativeAdversarialNetwork,GAN)的深度学
- 深度学习实战-使用TensorFlow与Keras构建智能模型
程序员Gloria
Python超入门TensorFlowpython
深度学习实战-使用TensorFlow与Keras构建智能模型深度学习已经成为现代人工智能的重要组成部分,而Python则是实现深度学习的主要编程语言之一。本文将探讨如何使用TensorFlow和Keras构建深度学习模型,包括必要的代码实例和详细的解析。1.深度学习简介深度学习是机器学习的一个分支,使用多层神经网络来学习和表示数据中的复杂模式。其广泛应用于图像识别、自然语言处理、推荐系统等领域。
- 【深度学习实战】当前三个最佳图像分类模型的代码详解
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型机器学习TransformerEfficientNetConvNeXt
下面给出三个在当前图像分类任务中精度表现突出的模型示例,分别基于SwinTransformer、EfficientNet与ConvNeXt。每个模型均包含:训练代码(使用PyTorch)从预训练权重开始微调(也可注释掉预训练选项,从头训练)数据集目录结构:└──dataset_root├──buy#第一类图像└──nobuy#第二类图像随机拆分:80%训练,20%验证每个Epoch输出一次loss
- 深度学习实战:基于嵌入模型的AI应用开发
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络人工智能深度学习ai
深度学习实战:基于嵌入模型的AI应用开发关键词:嵌入模型(EmbeddingModel)、深度学习、向量空间、语义表示、AI应用开发、相似性搜索、迁移学习摘要:本文将带你从0到1掌握基于嵌入模型的AI应用开发全流程。我们会用“翻译机”“数字身份证”等生活比喻拆解嵌入模型的核心原理,结合Python代码实战(BERT/CLIP模型)演示如何将文本、图像转化为可计算的语义向量,并通过“智能客服问答”“
- 计算机视觉与深度学习实战:以Python为工具,基于深度学习的汽车目标检测
好知识传播者
Python实例开发实战计算机视觉深度学习python基于深度学习的汽车目标检测
随着人工智能技术的飞速发展,计算机视觉与深度学习已经成为当今科技领域的热点。其中,汽车目标检测作为自动驾驶、智能交通等系统的核心技术,受到了广泛关注。本文将以Python为工具,探讨基于深度学习的汽车目标检测方法及其实战应用。一、计算机视觉与深度学习基础计算机视觉是研究如何让计算机从图像或视频中获取信息、理解内容并作出决策的科学。深度学习则是一种模拟人脑神经网络的机器学习技术,通过构建深层神经网络
- TensorFlow深度学习实战——Transformer变体模型
盼小辉丶
深度学习tensorflowtransformer
TensorFlow深度学习实战——Transformer变体模型0.前言1.BERT2.GPT-23.GPT-34.Reformer5.BigBird6.Transformer-XL7.XLNet8.RoBERTa9.ALBERT10.StructBERT11.T5和MUM12.ELECTRA13.DeBERTa14.进化Transformer和MEENA15.LaMDA16.SwitchTra
- 深度学习实战111-基于神经网络的A股、美股、黄金对冲投资策略(PyTorch LSTM)
微学AI
深度学习实战(进阶)深度学习神经网络pytorch
文章目录一、A股与美股对冲互补投资方案1.现象与逻辑2.对冲互补投资思路3.资金分配样例4.最大化收益的关键二、对冲互补投资思路1.资金分配原则2.动态调整机制3.对冲操作三、投资方案样例1.初始资金分配(假设总资金10万元)2.动态调整举例情景一:美股进入牛市,A股震荡情景二:A股进入牛市,美股高位震荡情景三:全球风险事件,市场大跌四、操作细节与注意事项五、样例操作流程六、基于神经网络的A股美股
- 【深度学习实战】图像二分类任务的精度优先模型推荐
云博士的AI课堂
大模型技术开发与实践哈佛博后带你玩转机器学习深度学习深度学习人工智能分类模型图像分类模型EfficientNetTransformerConvNeXt
图像二分类任务的精度优先模型推荐推荐3种在精度方面表现突出的图像分类模型架构。这些模型在PyTorch中有良好支持,可通过微调预训练模型或从头训练来应用。每种模型的介绍、微调/从头训练建议、精度表现和对趋势图类图像的适用性分析如下。1.SwinTransformer(视觉Transformer架构)简介:SwinTransformer是一种由Microsoft提出的VisionTransforme
- TensorFlow深度学习实战(18)——K-means 聚类详解
盼小辉丶
深度学习tensorflowkmeans
TensorFlow深度学习实战(18)——K-means聚类详解0.前言1.K-means聚类2.实现K-means聚类2.1算法实现2.2肘部法则3.K-means算法变体小结系列链接0.前言K-means聚类是一种常用的无监督学习算法,用于将数据集划分为若干个互不重叠的簇(cluster),使得同一簇内的数据点尽可能相似,而不同簇之间的数据点尽可能不同。在本节中,将介绍K-means聚类的基
- TensorFlow深度学习实战(17)——主成分分析详解
盼小辉丶
深度学习tensorflow人工智能
TensorFlow深度学习实战(17)——主成分分析详解0.前言1.主成分分析2.使用TensorFlow实现PCA3.TensorFlow嵌入API小结系列链接0.前言主成分分析(PrincipalComponentAnalysis,PCA)是一种强大的降维工具,通过找到数据的主成分,可以有效地减少数据的复杂性,去除冗余特征,并保留数据的主要信息,在数据预处理、特征提取和可视化等方面都有广泛的
- 深度学习实战108-基于通义千问Qwen2.5-Omni的智能数字人实时对话系统实现
微学AI
深度学习实战(进阶)大模型的实践应用深度学习人工智能QwenLLMOmni
大家好,我是微学AI,今天给大家介绍一下深度学习实战108-基于通义千问Qwen2.5-Omni的智能数字人实时对话系统实现。通义千问Qwen2.5-Omni作为全球首个端到端全模态大模型,实现了多模态输入与实时输出的完美结合,为构建智能数字人实时对话系统提供了强大技术支持。本报告将详细阐述基于该模型的智能数字人对话系统开发流程,包括项目背景、技术架构、实现代码及测试优化策略,帮助开发者快速构建具
- 深度学习实战 04:卷积神经网络之 VGG16 复现三(训练)
生信探索
深度学习cnn人工智能
在后续的系列文章中,我们将逐步深入探讨VGG16相关的核心内容,具体涵盖以下几个方面:卷积原理篇:详细剖析VGG的“堆叠小卷积核”设计理念,深入解读为何3×3×2卷积操作等效于5×5卷积,以及3×3×3卷积操作等效于7×7卷积。架构设计篇:运用PyTorch精确定义VGG16类,深入解析“Conv-BN-ReLU-Pooling”这一标准模块的构建原理与实现方式。3.训练实战篇:在小规模医学影像数
- PyTorch深度学习实战(18)—— 可视化工具
shangjg3
人工智能深度学习pytorch人工智能神经网络
在训练神经网络时,通常希望能够更加直观地了解训练情况,例如损失函数曲线、输入图片、输出图片等信息。这些信息可以帮助读者更好地监督网络的训练过程,并为参数优化提供方向和依据。最简单的办法就是打印输出,这种方式只能打印数值信息,不够直观,同时无法查看分布、图片、声音等。本节介绍两个深度学习中常用的可视化工具:TensorBoard和Visdom。1.TensorBoard最初,TensorBoard是
- 基于YOLOv8深度学习的人脸面部口罩检测系统【python源码+Pyqt5界面+数据集+训练代码】目标检测、深度学习实战
zhangjiaofa
YOLO深度学习python面部口罩检测
基本功能演示在这里插入图片描述摘要:人脸口罩面部检测能够准确地检测人脸是否佩戴口罩,对于控制疫情传播、保障公共卫生安全起到关键作用。本文基于YOLOv8深度学习框架,通过853张图片,训练了一个进行人脸面部口罩的目标检测模型,能够准确的检测人脸“戴口罩”、“未戴口罩”及“未正确佩戴口罩”。并基于此模型开发了一款带UI界面的人脸面部口罩检测系统,可用于实时检测场景中的人员是否佩戴口罩,更方便进行功能
- Keras深度学习实战——自编码器详解
鱼弦
机器学习设计类系统深度学习keras人工智能
鱼弦:公众号【红尘灯塔】,CSDN博客专家、内容合伙人、新星导师、全栈领域优质创作者、51CTO(Top红人+专家博主)、github开源爱好者(go-zero源码二次开发、游戏后端架构https://github.com/Peakchen)Keras深度学习实战——自编码器详解简介自编码器(AutoEncoder)是一种无监督学习算法,它通过学习输入数据的潜在表示来实现数据降维和特征提取。自编码
- TensorFlow深度学习实战(13)——神经嵌入详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(13)——神经嵌入详解0.前言1.神经嵌入简介1.1Item2Vec1.2node2vec2.数据集与模型分析3.实现神经嵌入小结系列链接0.前言神经嵌入(NeuralEmbedding)是一种通过神经网络模型将离散的符号(如词语、字符、图像等)映射到低维连续向量空间中的技术。它属于更广泛的嵌入(Embedding)技术范畴,在深度学习中起着关键作用。神经嵌入通过
- TensorFlow深度学习实战(10)——迁移学习详解
盼小辉丶
深度学习tensorflow迁移学习
TensorFlow深度学习实战(10)——迁移学习详解0.前言1.迁移学习1.1迁移学习基本概念1.2迁移学习的重要性1.3ImageNet1.4迁移学习流程2.InceptionV3架构3.构建迁移学习模型小结系列链接0.前言迁移学习(TransferLearning)是一种利用从一项任务中获得的知识来解决另一项类似任务的技术。一个使用数百万张图像训练的模型,训练数据涵盖数千种对象类别,模型的
- 【人工智能核心技术全景解读】从机器学习到深度学习实战
满怀1015
人工智能人工智能机器学习深度学习pythontensorflow
目录前言️技术背景与价值当前技术痛点️解决方案概述目标读者说明一、技术原理剖析核心概念图解核心作用讲解关键技术模块说明⚖️技术选型对比二、实战演示️环境配置要求️核心代码实现案例1:图像分类(CNN)案例2:文本情感分析(Transformer)运行结果验证⚡三、性能对比测试方法论量化数据对比结果分析四、最佳实践✅推荐方案❌常见错误调试技巧五、应用场景扩展适用领域创新应用方向生态工具链✨结语⚠️技
- PyTorch 深度学习实战(23):多任务强化学习(Multi-Task RL)之扩展
进取星辰
PyTorch深度学习实战深度学习pytorch人工智能
之前的PyTorch深度学习实战(23):多任务强化学习(Multi-TaskRL)总结扩展运用代码如下:importtorchimporttorch.nnasnnimporttorch.optimasoptimimportnumpyasnpfromtorch.distributionsimportNormalfromtorch.ampimportautocast,GradScalerfromme
- 大模型入门必读的9本硬核好书:豆瓣评分超9.0,值得反复研读!非常详细收藏这一篇就够!
大模型入门教程
AI大模型人工智能程序员产品经理学习大模型书籍大模型入门
模型大师们,准备好踏上一段深度学习与模型构建的路了吗?这里有八本经典之作,它们将是你攀登知识高峰的阶梯从《PyTorch深度学习实战》到《大模型时代》从掌握基础框架到洞悉大模型时代的变革模型大师,准备好了吗?翻烂这八本书,直接嘎嘎冲!第一本:《从零开始大模型开发与微调》《从零开始大模型开发与微调》是一本由王晓华所著,清华大学出版社出版的书籍。本书系统介绍了基于PyTorch2.0和ChatGLM的
- PyTorch深度学习实战(1)——PyTorch安装与配置
shangjg3
PyTorch深度学习实战深度学习pytorch机器学习人工智能
本章共有两节,2.1节介绍如何安装PyTorch,以及如何配置学习环境;2.2节带领读者快速浏览PyTorch中的主要内容,帮助读者初步了解PyTorch。PyTorch是一款以C语言为主导开发的轻量级深度学习框架,它提供了丰富的Python接口以便用户使用。在使用PyTorch之前,读者需要安装Python环境以及pip包管理工具,笔者推荐使用Anaconda配置相关虚拟环境。本书中的所有代码均
- 深度学习实战之手写数字识别
不吃香菜?
深度学习人工智能
一、简介在深度学习的世界里,手写数字识别是一个经典且入门级的任务,它就像是深度学习领域的“Hello,World!”,通过完成这个任务,我们能够快速掌握深度学习模型的搭建、训练与测试流程。本文将基于PyTorch框架,手把手教你实现一个手写数字识别模型。二、具体代码实现1、pytorch基础库导入importtorchprint(torch.__version__)#该行代码用来检查pytorch
- PyTorch深度学习实战(24)—— 爱因斯坦操作einsum 和 einops
shangjg3
PyTorch深度学习实战深度学习pytorch人工智能神经网络
在高级索引中还有一类特殊方法:爱因斯坦操作。下面介绍两种常用的爱因斯坦操作:einsum和einops,它们被广泛地用于向量、矩阵和张量的运算。灵活运用爱因斯坦操作可以用非常简单的方式表示较为复杂的多维Tensor之间的运算。1.einsum在数学界中,有一个由爱因斯坦提出来的求和约定,该约定能够有效处理坐标方程。爱因斯坦求和(einsum)就是基于这个法则,省略求和符号和默认成对出现的下标,从而
- PyTorch 深度学习实战(38):注意力机制全面解析(从Seq2Seq到Transformer)
进取星辰
PyTorch深度学习实战深度学习pytorchtransformer
在上一篇文章中,我们探讨了分布式训练实战。本文将深入解析注意力机制的完整发展历程,从最初的Seq2Seq模型到革命性的Transformer架构。我们将使用PyTorch实现2个关键阶段的注意力机制变体,并在机器翻译任务上进行对比实验。一、注意力机制演进路线1.关键模型对比模型发表年份核心创新计算复杂度典型应用Seq2Seq2014编码器-解码器架构O(n²)机器翻译BahdanauAttenti
- Python 深度学习实战 第10章 使用深度学习处理时间序列&RNN预测实例
odoo中国
人工智能深度学习pythonrnn时间序列
Python深度学习实战第10章使用深度学习处理时间序列数据&RNN实例内容概要第10章深入探讨了时间序列数据的深度学习应用,涵盖了从预测到分类、事件检测和异常检测等多种任务。本章通过温度预测示例,详细介绍了如何使用循环神经网络(RNN)及其变体(如LSTM和GRU)来处理时间序列数据。通过本章,读者将掌握如何使用深度学习解决时间序列问题,并理解RNN的工作原理。主要内容时间序列任务的类型预测:预
- TensorFlow深度学习实战(11)——风格迁移详解
盼小辉丶
深度学习tensorflow人工智能
TensorFLow深度学习实战(11)——风格迁移详解0.前言1.风格迁移原理1.1内容损失1.2风格损失2.模型分析3.使用TensorFlow实现神经风格迁移小结系列链接0.前言风格迁移是用于训练神经网络创作艺术作品的深度学习技术,同时也是一种有趣的神经网络应用,提供了一种用于深入理解神经网络的方式。在本节中,我们将学习神经风格迁移算法。在神经风格迁移中,我们需要一个内容图像和一个风格图像,
- TensorFlow深度学习实战(12)——词嵌入技术详解
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战(12)——词嵌入技术详解0.前言1.词嵌入基础2.分布式表示3.静态嵌入3.1Word2Vec3.2GloVe4.使用Gensim构建词嵌入5.使用Gensim探索嵌入空间6.动态嵌入小结系列链接0.前言在本节中,我们首先介绍词嵌入的概念,然后介绍两种实现词嵌入的方式:Word2Vec和GloVe,学习如何使用Gensim库从零开始构建语料库的词嵌入,并探索所创建
- TensorFlow深度学习实战(7)——分类任务详解
盼小辉丶
深度学习tensorflow分类
TensorFlow深度学习实战(7)——分类任务详解0.前言1.分类任务1.1分类任务简介1.2分类与回归的区别2.逻辑回归3.使用TensorFlow实现逻辑回归小结系列链接0.前言分类任务(ClassificationTask)是机器学习中的一种监督学习问题,其目的是将输入数据(特征向量)映射到离散的类别标签。广泛应用于如文本分类、图像识别、垃圾邮件检测、医学诊断等多种领域。1.分类任务1.
- PyTorch深度学习实战(45)——强化学习
盼小辉丶
深度学习pytorch强化学习
PyTorch深度学习实战(45)——强化学习0.前言1.强化学习基础1.1基本概念1.2马尔科夫决策过程1.3目标函数1.4智能体学习过程2.计算状态值3.计算状态-动作值4.Q学习4.1Q值4.2Gym环境4.3构建Q表4.4探索-利用策略小结系列链接0.前言强化学习是当前人工智能领域的研究热点问题,强化学习主要通过考察智能体与环境的相互作用,得到策略模型、优化策略并最大化累积回报的过程。强化
- TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入
盼小辉丶
深度学习tensorflow自然语言处理
TensorFlow深度学习实战——字符嵌入、子词嵌入、句子嵌入和段落嵌入0.前言1.字符嵌入2.字词嵌入3.句子嵌入和段落嵌入相关链接0.前言在自然语言处理中,嵌入(Embedding)技术是将文本转化为数值向量的核心方法,使计算机能够理解和处理语言中的语义信息。根据文本处理的粒度不同,除了词嵌入外,还包括字符嵌入、子词嵌入、句子嵌入和段落嵌入。这些嵌入技术使得计算机能够以不同的粒度理解和处理文
- 多线程编程之理财
周凡杨
java多线程生产者消费者理财
现实生活中,我们一边工作,一边消费,正常情况下会把多余的钱存起来,比如存到余额宝,还可以多挣点钱,现在就有这个情况:我每月可以发工资20000万元 (暂定每月的1号),每月消费5000(租房+生活费)元(暂定每月的1号),其中租金是大头占90%,交房租的方式可以选择(一月一交,两月一交、三月一交),理财:1万元存余额宝一天可以赚1元钱,
- [Zookeeper学习笔记之三]Zookeeper会话超时机制
bit1129
zookeeper
首先,会话超时是由Zookeeper服务端通知客户端会话已经超时,客户端不能自行决定会话已经超时,不过客户端可以通过调用Zookeeper.close()主动的发起会话结束请求,如下的代码输出内容
Created /zoo-739160015
CONNECTEDCONNECTED
.............CONNECTEDCONNECTED
CONNECTEDCLOSEDCLOSED
- SecureCRT快捷键
daizj
secureCRT快捷键
ctrl + a : 移动光标到行首ctrl + e :移动光标到行尾crtl + b: 光标前移1个字符crtl + f: 光标后移1个字符crtl + h : 删除光标之前的一个字符ctrl + d :删除光标之后的一个字符crtl + k :删除光标到行尾所有字符crtl + u : 删除光标至行首所有字符crtl + w: 删除光标至行首
- Java 子类与父类这间的转换
周凡杨
java 父类与子类的转换
最近同事调的一个服务报错,查看后是日期之间转换出的问题。代码里是把 java.sql.Date 类型的对象 强制转换为 java.sql.Timestamp 类型的对象。报java.lang.ClassCastException。
代码:
- 可视化swing界面编辑
朱辉辉33
eclipseswing
今天发现了一个WindowBuilder插件,功能好强大,啊哈哈,从此告别手动编辑swing界面代码,直接像VB那样编辑界面,代码会自动生成。
首先在Eclipse中点击help,选择Install New Software,然后在Work with中输入WindowBui
- web报表工具FineReport常用函数的用法总结(文本函数)
老A不折腾
finereportweb报表工具报表软件java报表
文本函数
CHAR
CHAR(number):根据指定数字返回对应的字符。CHAR函数可将计算机其他类型的数字代码转换为字符。
Number:用于指定字符的数字,介于1Number:用于指定字符的数字,介于165535之间(包括1和65535)。
示例:
CHAR(88)等于“X”。
CHAR(45)等于“-”。
CODE
CODE(text):计算文本串中第一个字
- mysql安装出错
林鹤霄
mysql安装
[root@localhost ~]# rpm -ivh MySQL-server-5.5.24-1.linux2.6.x86_64.rpm Preparing... #####################
- linux下编译libuv
aigo
libuv
下载最新版本的libuv源码,解压后执行:
./autogen.sh
这时会提醒找不到automake命令,通过一下命令执行安装(redhat系用yum,Debian系用apt-get):
# yum -y install automake
# yum -y install libtool
如果提示错误:make: *** No targe
- 中国行政区数据及三级联动菜单
alxw4616
近期做项目需要三级联动菜单,上网查了半天竟然没有发现一个能直接用的!
呵呵,都要自己填数据....我了个去这东西麻烦就麻烦的数据上.
哎,自己没办法动手写吧.
现将这些数据共享出了,以方便大家.嗯,代码也可以直接使用
文件说明
lib\area.sql -- 县及县以上行政区划分代码(截止2013年8月31日)来源:国家统计局 发布时间:2014-01-17 15:0
- 哈夫曼加密文件
百合不是茶
哈夫曼压缩哈夫曼加密二叉树
在上一篇介绍过哈夫曼编码的基础知识,下面就直接介绍使用哈夫曼编码怎么来做文件加密或者压缩与解压的软件,对于新手来是有点难度的,主要还是要理清楚步骤;
加密步骤:
1,统计文件中字节出现的次数,作为权值
2,创建节点和哈夫曼树
3,得到每个子节点01串
4,使用哈夫曼编码表示每个字节
- JDK1.5 Cyclicbarrier实例
bijian1013
javathreadjava多线程Cyclicbarrier
CyclicBarrier类
一个同步辅助类,它允许一组线程互相等待,直到到达某个公共屏障点 (common barrier point)。在涉及一组固定大小的线程的程序中,这些线程必须不时地互相等待,此时 CyclicBarrier 很有用。因为该 barrier 在释放等待线程后可以重用,所以称它为循环的 barrier。
CyclicBarrier支持一个可选的 Runnable 命令,
- 九项重要的职业规划
bijian1013
工作学习
一. 学习的步伐不停止 古人说,活到老,学到老。终身学习应该是您的座右铭。 世界在不断变化,每个人都在寻找各自的事业途径。 您只有保证了足够的技能储
- 【Java范型四】范型方法
bit1129
java
范型参数不仅仅可以用于类型的声明上,例如
package com.tom.lang.generics;
import java.util.List;
public class Generics<T> {
private T value;
public Generics(T value) {
this.value =
- 【Hadoop十三】HDFS Java API基本操作
bit1129
hadoop
package com.examples.hadoop;
import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.fs.FSDataInputStream;
import org.apache.hadoop.fs.FileStatus;
import org.apache.hadoo
- ua实现split字符串分隔
ronin47
lua split
LUA并不象其它许多"大而全"的语言那样,包括很多功能,比如网络通讯、图形界面等。但是LUA可以很容易地被扩展:由宿主语言(通常是C或 C++)提供这些功能,LUA可以使用它们,就像是本来就内置的功能一样。LUA只包括一个精简的核心和最基本的库。这使得LUA体积小、启动速度快,从 而适合嵌入在别的程序里。因此在lua中并没有其他语言那样多的系统函数。习惯了其他语言的字符串分割函
- java-从先序遍历和中序遍历重建二叉树
bylijinnan
java
public class BuildTreePreOrderInOrder {
/**
* Build Binary Tree from PreOrder and InOrder
* _______7______
/ \
__10__ ___2
/ \ /
4
- openfire开发指南《连接和登陆》
开窍的石头
openfire开发指南smack
第一步
官网下载smack.jar包
下载地址:http://www.igniterealtime.org/downloads/index.jsp#smack
第二步
把smack里边的jar导入你新建的java项目中
开始编写smack连接openfire代码
p
- [移动通讯]手机后盖应该按需要能够随时开启
comsci
移动
看到新的手机,很多由金属材质做的外壳,内存和闪存容量越来越大,CPU速度越来越快,对于这些改进,我们非常高兴,也非常欢迎
但是,对于手机的新设计,有几点我们也要注意
第一:手机的后盖应该能够被用户自行取下来,手机的电池的可更换性应该是必须保留的设计,
- 20款国外知名的php开源cms系统
cuiyadll
cms
内容管理系统,简称CMS,是一种简易的发布和管理新闻的程序。用户可以在后端管理系统中发布,编辑和删除文章,即使您不需要懂得HTML和其他脚本语言,这就是CMS的优点。
在这里我决定介绍20款目前国外市面上最流行的开源的PHP内容管理系统,以便没有PHP知识的读者也可以通过国外内容管理系统建立自己的网站。
1. Wordpress
WordPress的是一个功能强大且易于使用的内容管
- Java生成全局唯一标识符
darrenzhu
javauuiduniqueidentifierid
How to generate a globally unique identifier in Java
http://stackoverflow.com/questions/21536572/generate-unique-id-in-java-to-label-groups-of-related-entries-in-a-log
http://stackoverflow
- php安装模块检测是否已安装过, 使用的SQL语句
dcj3sjt126com
sql
SHOW [FULL] TABLES [FROM db_name] [LIKE 'pattern']
SHOW TABLES列举了给定数据库中的非TEMPORARY表。您也可以使用mysqlshow db_name命令得到此清单。
本命令也列举数据库中的其它视图。支持FULL修改符,这样SHOW FULL TABLES就可以显示第二个输出列。对于一个表,第二列的值为BASE T
- 5天学会一种 web 开发框架
dcj3sjt126com
Web框架framework
web framework层出不穷,特别是ruby/python,各有10+个,php/java也是一大堆 根据我自己的经验写了一个to do list,按照这个清单,一条一条的学习,事半功倍,很快就能掌握 一共25条,即便很磨蹭,2小时也能搞定一条,25*2=50。只需要50小时就能掌握任意一种web框架
各类web框架大同小异:现代web开发框架的6大元素,把握主线,就不会迷路
建议把本文
- Gson使用三(Map集合的处理,一对多处理)
eksliang
jsongsonGson mapGson 集合处理
转载请出自出处:http://eksliang.iteye.com/blog/2175532 一、概述
Map保存的是键值对的形式,Json的格式也是键值对的,所以正常情况下,map跟json之间的转换应当是理所当然的事情。 二、Map参考实例
package com.ickes.json;
import java.lang.refl
- cordova实现“再点击一次退出”效果
gundumw100
android
基本的写法如下:
document.addEventListener("deviceready", onDeviceReady, false);
function onDeviceReady() {
//navigator.splashscreen.hide();
document.addEventListener("b
- openldap configuration leaning note
iwindyforest
configuration
hostname // to display the computer name
hostname <changed name> // to change
go to: /etc/sysconfig/network, add/modify HOSTNAME=NEWNAME to change permenately
dont forget to change /etc/hosts
- Nullability and Objective-C
啸笑天
Objective-C
https://developer.apple.com/swift/blog/?id=25
http://www.cocoachina.com/ios/20150601/11989.html
http://blog.csdn.net/zhangao0086/article/details/44409913
http://blog.sunnyxx
- jsp中实现参数隐藏的两种方法
macroli
JavaScriptjsp
在一个JSP页面有一个链接,//确定是一个链接?点击弹出一个页面,需要传给这个页面一些参数。//正常的方法是设置弹出页面的src="***.do?p1=aaa&p2=bbb&p3=ccc"//确定目标URL是Action来处理?但是这样会在页面上看到传过来的参数,可能会不安全。要求实现src="***.do",参数通过其他方法传!//////
- Bootstrap A标签关闭modal并打开新的链接解决方案
qiaolevip
每天进步一点点学习永无止境bootstrap纵观千象
Bootstrap里面的js modal控件使用起来很方便,关闭也很简单。只需添加标签 data-dismiss="modal" 即可。
可是偏偏有时候需要a标签既要关闭modal,有要打开新的链接,尝试多种方法未果。只好使用原始js来控制。
<a href="#/group-buy" class="btn bt
- 二维数组在Java和C中的区别
流淚的芥末
javac二维数组数组
Java代码:
public class test03 {
public static void main(String[] args) {
int[][] a = {{1},{2,3},{4,5,6}};
System.out.println(a[0][1]);
}
}
运行结果:
Exception in thread "mai
- systemctl命令用法
wmlJava
linuxsystemctl
对比表,以 apache / httpd 为例 任务 旧指令 新指令 使某服务自动启动 chkconfig --level 3 httpd on systemctl enable httpd.service 使某服务不自动启动 chkconfig --level 3 httpd off systemctl disable httpd.service 检查服务状态 service h