TensorFlow深度学习实战(10)——迁移学习详解

TensorFlow深度学习实战(10)——迁移学习详解

    • 0. 前言
    • 1. 迁移学习
      • 1.1 迁移学习基本概念
      • 1.2 迁移学习的重要性
      • 1.3 ImageNet
      • 1.4 迁移学习流程
    • 2. Inception V3 架构
    • 3. 构建迁移学习模型
    • 小结
    • 系列链接

0. 前言

迁移学习( Transfer Learning )是一种利用从一项任务中获得的知识来解决另一项类似任务的技术。一个使用数百万张图像训练的模型,训练数据涵盖数千种对象类别,模型的卷积核将能够学习图像中的各种形状、颜色和纹理,通过重用这些卷积核可以学习到新图像的特征,并最终用于执行计算机视觉任务。随着训练数据集中可用图像数量的增加,模型的分类准确率会不断提高,然而,在实际训练模型过程中,获取大量具有标签的数据样本通常比较困难,需要耗费大量时间和人力成本,而迁移学习能够在训练数据不足的情况下实现更好的泛化性能。

1. 迁移学习

1.1 迁移学习基本概念

迁移学习指利用已经学习好的模型在新任务上具有良好的表现和推广能力的机器学习技术,能够将通用数据集上的模型学习迁移到特定数据集中。通常,用于执行迁移学习的预训练模型在数百万张图像(通用大型数据集)上进行训练,然后使用特定感兴趣数据集微调预训练模型。

TensorFlow深度学习实战(10)——迁移学习详解_第1张图片

1.2 迁移学习的重要性

假设我们需要

你可能感兴趣的:(深度学习,tensorflow,迁移学习)