传送门
当然是考虑 $n$ 的每个质数 $p$ 对答案的贡献
考虑 $p^k$ 在 $[1,m]$ 中出现了几次,显然是 $\left \lfloor \frac{m}{p^k} \right \rfloor$ 次
那么对于 $p^k$ ,它目前的贡献就是 $p^{\left \lfloor \frac{m}{p^k} \right \rfloor}$ ,注意这里不是 $p^{k\left \lfloor \frac{m}{p^k} \right \rfloor}$,因为之后计算对于 $k'
然后现在问题是求 $n$ 的质因数,显然 $n$ 最多只有一个质因数大于 $\sqrt{n}$ ,那么我们只要筛 $\sqrt{n}$ 以内的质数即可
注意可能乘的时候可能爆 $long\ long$
#include
#include
#include
#include
#include
#include