- 4篇2章5节:ANOVA 功效的单次精确模拟与可视化全解析
MD分析
用R探索医药数据科学r语言-4.2.1r语言功效曲线单次精确模拟分析
在医学研究尤其是糖尿病等干预性试验中,精准的实验设计与功效分析是确保研究价值的关键。R语言为重复测量方差分析(ANOVA)提供了强大工具,从实验设计构建、单次精确模拟分析,到功效曲线可视化,覆盖研究全流程。本文结合糖尿病胰岛素治疗试验案例,深度拆解函数的应用逻辑,手把手教你用数据驱动实验设计,让“样本量规划”“效应检测能力”从抽象概念变为可操作、可视化的研究支撑。一、相关函数的介绍在医学研究中,实
- 医咖会免费STATA教程学习笔记——单因素方差分析
Unacandoit
stata单因素方差分析
单因素方差分析和单因素回归分析相同1.单因素方差分析需要满足的假设:(1)因变量为连续变量(2)至少有一个分类变量(大于等于2类)(3)观测值相互独立(4)没有异常值(5)服从正态分布(6)方差齐性2.准备工作(1)导入数据集:webusesystolic,clear(2)检验是否存在异常值:方法一:图形——箱线图——在变量中选择systolic——确定方法二:grahboxsystolic,ov
- R语言学习笔记之十
摘要:仅用于记录R语言学习过程:内容提要:描述性统计;t检验;数据转换;方差分析;卡方检验;回归分析与模型诊断;生存分析;COX回归写在正文前的话,关于基础知识,此篇为终结篇,笔记来自医学方的课程,仅用于学习R的过程。正文:描述性统计n如何去生成table1用table()函数,快速汇总频数u生成四格表:table(行名,列名)>table(tips$sex,tips$smoker)NoYesFe
- 特征筛选方法总结(面试准备15)
爱学习的uu
人工智能大数据数据挖掘决策树
非模型方法一.FILTER过滤法:1.缺失值比例(80%以上缺失则删除)/方差注意:连续变量只删方差为0的,因为变量取值范围会影响方差大小。离散类的看各类取值占比,如果是三分类变量可以视作连续变量。函数:VarianceThreshold二.假设检验:卡方检验看离散变量是否独立方差分析看离散和连续变量是否独立F检验看连续变量是否独立三.互信息的关联度指标:相关系数(f_regression:是相关
- 方差分析表和回归分析表的那些浆糊糊
Angel Q.
线性回归方差分析回归分析概率论
先上表!我们来看一些基本的名词:(公式编辑还在学x的均值一直打不出来有会的还请评论区教教我)1.1方差分析表其中:k—因素总体的个数;n—观测值个数SSA(组间离差平方和)是:个水平组均值与总体均值离差的平方和;反映了控制变量不同水平对观测变量的影响SSE(组内离差平方和)是:每个观测数据与本水平组均值离差的平方和;反映了抽样误差的大小SST(总离差平方和)是:SSA+SSE1.2回归分析表直观来
- 从0开始学习R语言--Day09--方差分析
Chef_Chen
学习r语言开发语言
前两天我们学习了T检验来判断两组数据之间的差异是显著存在还是因为偶然,但如果存在多组数据,我们还是两两去对比作T检验的话,会存在假阳性(也就是把没有差异判断为有差异),虽然每次单独的T检验只有5%,但即使数据只是多了三组,也要作三次T检验,假阳性的概率就被叠加到了大概14%。方差分析而如果我们采用方差分析的方式,先判断是否存在差异,并在后续判断两两之间的差异时,考虑数据组内的差异性,因为存在即使两
- 概率论的基本概念
Mr.魏(魏先生)
概率论的起源与发展概率论产生于十六世纪十六世纪中叶,卡当在赌博时研究不输的方法1654年,德·美黑——“合理分配赌注问题”1657年,惠更斯——《论机会游戏的计算》1933年,柯尔莫哥洛夫——《概率论的基本概念》数理统计的历史1763年,贝叶斯贝叶斯方法1809年,高斯和勒让德——最小二乘法皮尔逊、戈赛特、费歇——频率曲线、多元分析、估计和方差分析概率论是数理统计学的基础,数理统计学是概率论的一种
- Python设计方差分析实验
Mr数据杨
Python数据分析师python数据分析人工智能
方差分析(ANOVA)是一种用于检测多个样本均值之间差异的统计方法,广泛应用于实验设计与数据分析中。通过分析不同因素对实验结果的影响,方差分析能够帮助评估哪些因素显著影响了实验结果,并且可以提供各因素交互作用的深入理解。在多因子实验设计中,随机化、重复和平衡的设计原则非常重要。本文将详细介绍方差分析的实验设计原理,并结合拉丁方设计与正交试验的应用进行讲解。本教程旨在帮助自学者理解方差分析的基本原理
- R语言学习--Day01--数据清洗初了解andR的经典筛选语法
Chef_Chen
学习
当我们在拿到一份数据时,是否遇到过想要分析数据却无从下手?通过编程语言去利用它时发现有很多报错不是来源于代码而是因为数据里有很多脏数据;在这个时候,如果你会用R语言来对数据进行清洗,这会让你的效率提升很多。R语言的典型使用场景统计分析执行假设检验(t检验、卡方检验)、回归分析、方差分析等优势:内置stats包提供100+统计函数,如lm(),aov()数据可视化绘制统计图表(散点图、箱线图、热力图
- 2023年第十四届蓝桥杯省赛C++ 大学生A组
qq_56607982
蓝桥杯c++职场和发展
基本没有算法基础,第一次参加蓝桥杯,简单复盘一下。目录试题A幸运数分析枚举O(K)试题B有奖问答分析DFS试题C平方差分析枚举O(n^3)因数分解O(n*sqrt(n))奇偶判断O(n)试题D更小的数分析动态规划DPO(n^2)试题E颜色平衡树分析试题F买瓜分析试题I网络稳定性分析并查集+dijkstra算法试题A幸运数分析:1~10e8,不用考虑奇数位跳过的问题,直接枚举。枚举O(K)#incl
- R语言堆叠占比柱状图_R语言统计篇:单因素方差分析
weixin_39628063
R语言堆叠占比柱状图r语言多重对应分析r语言径向柱状图做方差分析需要正态性检验吗用R语言做词频统计
点击蓝字就可以关注"R语言与统计"哦~~:大家好~~~又是干货满满的一天!往期文章介绍过独立样本t检验(R语言统计篇:独立样本t检验),可以用于两个独立样本的均数比较。今天的内容是单因素方差分析(one-factorANOVA或one-wayANOVA),与独立样本t检验非常类似,都属于参数性检验。不同点在于:单因素方差分析可以用于大于两个样本的均数比较。与所有的参数性检验类似,使用单因素方差分析
- 在SPSS中进行单因素方差分析(One-Way ANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。
zhangfeng1133
均值算法算法
在SPSS中进行单因素方差分析(One-WayANOVA)是一种常见的统计分析方法,用于比较三个或更多独立组之间的均值差异。以下是进行单因素方差分析的详细步骤:---###1.**数据准备**-**因变量**:需要分析的连续变量(如成绩、收入等)。-**自变量**:分类变量(如组别、性别等),通常是一个名义变量。数据结构示例:|组别(自变量)|成绩(因变量)||----------------|-
- 在SPSS的单因素方差分析(One-Way ANOVA)中,F值和t值是两种不同的统计量 f/t
zhangfeng1133
数据分析
在SPSS的单因素方差分析(One-WayANOVA)中,F值和t值是两种不同的统计量,用于不同的分析场景,具体含义如下:###1.**F值**F值是单因素方差分析中的统计量,用于检验多个组之间的均值是否存在显著差异。它是通过比较组间方差与组内方差的比值来计算的,具体公式为:**F值=组间方差/组内方差**-**F值的意义**:-F值越大,说明组间差异相对于组内差异越大,即不同组之间的均值差异越显
- html利用列表写单选题,请写出利用列表标签实现如下图所示效果的HTML代码:
小花学姐
html利用列表写单选题
【判断题】服务消费过程中各个步骤的不同性质取决于服务是高接触度服务还是低接触度服务。【单选题】下列不能形成氨配合物的离子是()。【判断题】线性无关组的任意一个部分向量组的线性相关性为相关。【单选题】火腿的腌制方法为()。【填空题】用修饰符修饰的成员只能在自己类中直接访问。【判断题】威尔克斯统计量在多元方差分析中是用于检验均值是否相等的统计量。【单选题】净重为61kg的生丝,实际回潮率为12.6%,
- 使用python进行单因素方差分析(ANOVA)和事后多重比较(LSD)
thinkwindows
数据分析python算法excel
#idea来源#在使用spss帮朋友做单因素分析时,发现个别数据需要调整到符合显著性的要求,在spss中修改数据,再在spss中操作步骤太麻烦,于是有了这个想法。程序思路1、将数据放到excel里,确定两列数据,Group(分组数据)和B(对应数据列)2、程序读取excel数据3、整理数据格式,将数据分组,将数据从宽格式转换为长格式,以便于进行ANOVA分析。4、执行单因素方差分析(ANOVA),
- 从原理和公式出发:python实现One_Way_ANOVA
^哪来的&永远~
python算法概率论
文章目录目的:python实现onewayANOVA单因素方差分析1.代码流程2.python代码实现0主要的函数1加载数据2查看数据统计结果3数据处理及可视化4方差分析4.1模型拟合4.2单因素方差分析5PostHoct-test组间比较分析6根据定义自行分解计算对比调用函数的结果7获取F分布对应的P值3.方差分析公式及原理参考目的:python实现onewayANOVA单因素方差分析方差分析(
- ANOVA:在Python中构建和理解ANOVA(方差分析)
python收藏家
python数据科学python
ANOVA(方差分析)是一种统计技术,用于确定三个或更多独立(不相关)组的平均值之间是否存在任何统计学显著差异。它有助于检验关于组间均值差异的假设,在比较多个组时特别有用。在Python中,可以使用scipy.stats模块中的f_oneway函数来执行单因素方差分析(one-wayANOVA),或者使用statsmodels库中的ANOVA类来进行更复杂的方差分析。重要概念总体均值(Popula
- 多独立样本秩检验:Kruskal-Wallis检验
木子算法
非参数统计非参数检验概率论统计
多独立样本秩检验:Kruskal-Wallis检验的理论与实践一、引言在统计学中,当数据不满足正态分布或方差齐性假设时,传统的参数检验(如方差分析ANOVA)可能失效。此时,非参数检验方法(如秩检验)成为更可靠的选择。本文将详细介绍多独立样本秩检验的核心方法——Kruskal-Wallis检验,包括其理论基础、公式推导、案例分析及Python实现。二、理论基础1.问题定义假设我们有kkk个独立样本
- Matlab 大量接单
matlabgoodboy
matlab开发语言
分享一个matlab接私活、兼职的平台1、技术方向满足任一即可2、技术要求3、最后技术方向满足即可MATLAB:熟练掌握MATLAB编程语言,能够使用MATLAB进行数据处理、机器学习和深度学习等相关工作。机器学习、深度学习、强化学习、仿真、复现、算法、神经网络、建模、图像识别、数据挖掘、数据获取、爬虫、数据分析、目标检测、算法创新、因子分析、相关分析、方差分析、判别分析、方程分析、线性回归、中介
- 数据挖掘中特征发现与特征提取的数学原理
调皮的芋头
数据挖掘人工智能AIGC计算机视觉
好的,我将深入研究数据挖掘中特征发现与特征提取的数学原理,涵盖统计学基础、特征工程的数学方法、以及在机器学习和深度学习中的应用。我会整理相关数学公式和理论,包括主成分分析(PCA)、独立成分分析(ICA)、线性判别分析(LDA)、信息增益、互信息、方差分析等统计方法,并结合金融量化交易的实际应用,确保内容既有理论深度,又能落地实践。完成后,我会通知您!1.统计学基础:描述性统计、方差分析、相关性与
- 【GRR】重复性和再现性
Stongtang
python
一、序章通常通过加工部件的测量数据去分析过程的状态、过程的能力和监控过程的变化。那么,怎么确保分析的结果是正确的呢?我们必须从两方面来保证,一是确保测量数据的准确性/质量,使用测量系统分析(MSA)方法对获得测量数据的测量系统进行评估;二是确保使用了合适的数据分析方法,如使用SPC工具、试验设计、方差分析、回归分析等。测量系统的误差由稳定条件下运行的测量系统多次测量数据的统计特性:偏倚和方差来表征
- ggplot2箱式图两两比较_科学网—ggplot2:方差分析多重比较标注显著字母 - 周运来的博文...
weixin_39548740
ggplot2箱式图两两比较
赖江山老师在科学网分享了FrancoisGillet编写的两个方差分析多重比较的函数boxplert()和boxplerk()【来源NumericalEcologywithR(secondEdition)】我看了一下出图的部分是用boxplot函数绘制的,作为一个ggplot2的爱好者自己尝试着用ggplot2把函数boxplert()重新写了一下。在重写的过程中收获几个问题:X轴如何按照给定的数
- python方差分析误差棒_一文讲透,带你学会用Python绘制带误差棒的柱状图和条形图...
加勒比考斯
python方差分析误差棒
Python数据可视化,作为数据常用的必备技能,是目前大数据和数据分析的一个热门,而matplotlib库作为Python中最为常用和经典的二维绘图库,受到了很多人的青睐,最近已经和大家共同探讨了多种类型的图表的绘制,其中关于误差棒图,咱们已经在上次一起讨论过了,今天咱们继续深入研究误差棒图相关的知识。那今天咱们聊点什么呢?咱们一起探讨一下如何在Python中绘制带误差棒的柱状图和条形图吧!首先,
- python绘制带有显著性差异的柱状图
彭博锐
python开发语言AI编程
直观认识有的时候看文献会发现柱状图上标记有不同的字母,这其实是使用字母表示法来代表不同组之间的差异,不同的字母表示具有显著性的差异,相同的字母表示没有显著性差异。图片来自文献(Lietal.,2019)含有大小写字母的两组方差分析参考自文献(马继龙等,2024)。显著性差异的表示方法常见的一般有P值、星号标记和字母标记等。1、P值:当P值小于或等于事先设定的显著性水平(通常是0.05)时,我们认为
- wps2019数据分析加载项_wps单因素分析数据 wps2019单因素方差分析
战斗力旺盛的伯爵
wps2019数据分析加载项
请问wpsexcel如何进行单因素方差分析?在“数据”选项下的“分析”“分析工具”中,选择“方差分析-单因素方差分析”,并进行相应的设置,即可。在WPS里面excel算显著性差异应该找哪里?1、如图,比较两组数据之间的差异性。2、首先需要为Excel添加分析工具的加载项插件,点击office按钮-excel选项-加载项-转到-勾选分析工具库。3、接下来需要选择数据区域,数据-分析-数据分析;选择单
- python 单因子方差分析_假设检验之F检验-方差分析
雏Carnation
python单因子方差分析
这一次我们来了解一下假设检验中另一个重要检验-F检验什么是F检验?F检验(F-test),最常用的别名叫做联合假设检验(英语:jointhypothesestest),此外也称方差比率检验、方差齐性检验,方差分析,它是一种在(H0)之下,统计值服从的检验。其通常是用来分析用了超过一个参数的统计模型,以判断该模型中的全部或一部分参数是否适合用来估计总体F检验对于数据的正态性非常敏感,因此在检验方差齐
- python卡方检验计算pvalue值_Python数据科学:卡方检验
CodeWhiz
之前已经介绍的变量分析:①相关分析:一个连续变量与一个连续变量间的关系。②双样本t检验:一个二分分类变量与一个连续变量间的关系。③方差分析:一个多分类分类变量与一个连续变量间的关系。本次介绍:卡方检验:一个二分分类变量或多分类分类变量与一个二分分类变量间的关系。如果其中一个变量的分布随着另一个变量的水平不同而发生变化时,那么两个分类变量就有关系。卡方检验并不能展现出两个分类变量相关性的强弱,只能展
- 【Python・统计学】单因素方差分析(简单原理及代码)
TUTO_TUTO
统计学pythonpython学习笔记
前言自学笔记,分享给对统计学原理不太清楚但需要在论文中用到的小伙伴,欢迎大佬们补充或绕道。ps:本文不涉及公式讲解(文科生小白友好体质)~本文重点:单因素方差分析(以下:方差分析)【1.方差分析简单原理和前提条件】【2.方差分析和t检验的区别】【3.方差分析代码(配对/独立+事后检验+效应量)】1.方差分析简单原理方差分析(ANOVA)又称“变异数分析”或“F检验”,是由罗纳德·费雪爵士发明的,用
- Python 数学建模——方差分析
Desire.984
Python数学建模数学建模python概率论
文章目录前言单因素方差分析原理核心代码双因素方差分析数学模型分析依据典型代码前言 方差分析也是概率论中非常重要的内容,有时数学建模需要用到。方差分析是干什么的?如果说假设检验用于分析两个总体之间的均值μ1,μ2\mu_1,\mu_2μ1,μ2是否存在显著的差别,那么方差分析就是分析两个以上总体之间的均值是否存在显著的差别。单因素方差分析用途:已知一个量AAA可能会影响XXX,AAA的不同取值可能
- python可以构建sem模型_结构方程模型(SEM)可用于微生态研究及R语言实现
weixin_39650139
python可以构建sem模型
导读结构方程模型(StructuralEquationModeling,SEM)是一种能基于变量之间的协方差矩阵分析多变量之间结构关系的多元统计分析方法,也被称为协方差结构模型。该方法是因子分析和多元回归分析的结合,可用于分析被测变量与潜在变量之间的结构关系,替代多重回归、通径分析、因子分析、协方差分析等分析方法。结构方程模型能在一次分析中估计多个相互关联的变量之间的依赖关系而受到研究者的青睐。早
- Spring中@Value注解,需要注意的地方
无量
springbean@Valuexml
Spring 3以后,支持@Value注解的方式获取properties文件中的配置值,简化了读取配置文件的复杂操作
1、在applicationContext.xml文件(或引用文件中)中配置properties文件
<bean id="appProperty"
class="org.springframework.beans.fac
- mongoDB 分片
开窍的石头
mongodb
mongoDB的分片。要mongos查询数据时候 先查询configsvr看数据在那台shard上,configsvr上边放的是metar信息,指的是那条数据在那个片上。由此可以看出mongo在做分片的时候咱们至少要有一个configsvr,和两个以上的shard(片)信息。
第一步启动两台以上的mongo服务
&nb
- OVER(PARTITION BY)函数用法
0624chenhong
oracle
这篇写得很好,引自
http://www.cnblogs.com/lanzi/archive/2010/10/26/1861338.html
OVER(PARTITION BY)函数用法
2010年10月26日
OVER(PARTITION BY)函数介绍
开窗函数 &nb
- Android开发中,ADB server didn't ACK 解决方法
一炮送你回车库
Android开发
首先通知:凡是安装360、豌豆荚、腾讯管家的全部卸载,然后再尝试。
一直没搞明白这个问题咋出现的,但今天看到一个方法,搞定了!原来是豌豆荚占用了 5037 端口导致。
参见原文章:一个豌豆荚引发的血案——关于ADB server didn't ACK的问题
简单来讲,首先将Windows任务进程中的豌豆荚干掉,如果还是不行,再继续按下列步骤排查。
&nb
- canvas中的像素绘制问题
换个号韩国红果果
JavaScriptcanvas
pixl的绘制,1.如果绘制点正处于相邻像素交叉线,绘制x像素的线宽,则从交叉线分别向前向后绘制x/2个像素,如果x/2是整数,则刚好填满x个像素,如果是小数,则先把整数格填满,再去绘制剩下的小数部分,绘制时,是将小数部分的颜色用来除以一个像素的宽度,颜色会变淡。所以要用整数坐标来画的话(即绘制点正处于相邻像素交叉线时),线宽必须是2的整数倍。否则会出现不饱满的像素。
2.如果绘制点为一个像素的
- 编码乱码问题
灵静志远
javajvmjsp编码
1、JVM中单个字符占用的字节长度跟编码方式有关,而默认编码方式又跟平台是一一对应的或说平台决定了默认字符编码方式;2、对于单个字符:ISO-8859-1单字节编码,GBK双字节编码,UTF-8三字节编码;因此中文平台(中文平台默认字符集编码GBK)下一个中文字符占2个字节,而英文平台(英文平台默认字符集编码Cp1252(类似于ISO-8859-1))。
3、getBytes()、getByte
- java 求几个月后的日期
darkranger
calendargetinstance
Date plandate = planDate.toDate();
SimpleDateFormat df = new SimpleDateFormat("yyyy-MM-dd");
Calendar cal = Calendar.getInstance();
cal.setTime(plandate);
// 取得三个月后时间
cal.add(Calendar.M
- 数据库设计的三大范式(通俗易懂)
aijuans
数据库复习
关系数据库中的关系必须满足一定的要求。满足不同程度要求的为不同范式。数据库的设计范式是数据库设计所需要满足的规范。只有理解数据库的设计范式,才能设计出高效率、优雅的数据库,否则可能会设计出错误的数据库.
目前,主要有六种范式:第一范式、第二范式、第三范式、BC范式、第四范式和第五范式。满足最低要求的叫第一范式,简称1NF。在第一范式基础上进一步满足一些要求的为第二范式,简称2NF。其余依此类推。
- 想学工作流怎么入手
atongyeye
jbpm
工作流在工作中变得越来越重要,很多朋友想学工作流却不知如何入手。 很多朋友习惯性的这看一点,那了解一点,既不系统,也容易半途而废。好比学武功,最好的办法是有一本武功秘籍。研究明白,则犹如打通任督二脉。
系统学习工作流,很重要的一本书《JBPM工作流开发指南》。
本人苦苦学习两个月,基本上可以解决大部分流程问题。整理一下学习思路,有兴趣的朋友可以参考下。
1 首先要
- Context和SQLiteOpenHelper创建数据库
百合不是茶
androidContext创建数据库
一直以为安卓数据库的创建就是使用SQLiteOpenHelper创建,但是最近在android的一本书上看到了Context也可以创建数据库,下面我们一起分析这两种方式创建数据库的方式和区别,重点在SQLiteOpenHelper
一:SQLiteOpenHelper创建数据库:
1,SQLi
- 浅谈group by和distinct
bijian1013
oracle数据库group bydistinct
group by和distinct只了去重意义一样,但是group by应用范围更广泛些,如分组汇总或者从聚合函数里筛选数据等。
譬如:统计每id数并且只显示数大于3
select id ,count(id) from ta
- vi opertion
征客丶
macoprationvi
进入 command mode (命令行模式)
按 esc 键
再按 shift + 冒号
注:以下命令中 带 $ 【在命令行模式下进行】,不带 $ 【在非命令行模式下进行】
一、文件操作
1.1、强制退出不保存
$ q!
1.2、保存
$ w
1.3、保存并退出
$ wq
1.4、刷新或重新加载已打开的文件
$ e
二、光标移动
2.1、跳到指定行
数字
- 【Spark十四】深入Spark RDD第三部分RDD基本API
bit1129
spark
对于K/V类型的RDD,如下操作是什么含义?
val rdd = sc.parallelize(List(("A",3),("C",6),("A",1),("B",5))
rdd.reduceByKey(_+_).collect
reduceByKey在这里的操作,是把
- java类加载机制
BlueSkator
java虚拟机
java类加载机制
1.java类加载器的树状结构
引导类加载器
^
|
扩展类加载器
^
|
系统类加载器
java使用代理模式来完成类加载,java的类加载器也有类似于继承的关系,引导类是最顶层的加载器,它是所有类的根加载器,它负责加载java核心库。当一个类加载器接到装载类到虚拟机的请求时,通常会代理给父类加载器,若已经是根加载器了,就自己完成加载。
虚拟机区分一个Cla
- 动态添加文本框
BreakingBad
文本框
<script> var num=1; function AddInput() { var str=""; str+="<input 
- 读《研磨设计模式》-代码笔记-单例模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
public class Singleton {
}
/*
* 懒汉模式。注意,getInstance如果在多线程环境中调用,需要加上synchronized,否则存在线程不安全问题
*/
class LazySingleton
- iOS应用打包发布常见问题
chenhbc
iosiOS发布iOS上传iOS打包
这个月公司安排我一个人做iOS客户端开发,由于急着用,我先发布一个版本,由于第一次发布iOS应用,期间出了不少问题,记录于此。
1、使用Application Loader 发布时报错:Communication error.please use diagnostic mode to check connectivity.you need to have outbound acc
- 工作流复杂拓扑结构处理新思路
comsci
设计模式工作算法企业应用OO
我们走的设计路线和国外的产品不太一样,不一样在哪里呢? 国外的流程的设计思路是通过事先定义一整套规则(类似XPDL)来约束和控制流程图的复杂度(我对国外的产品了解不够多,仅仅是在有限的了解程度上面提出这样的看法),从而避免在流程引擎中处理这些复杂的图的问题,而我们却没有通过事先定义这样的复杂的规则来约束和降低用户自定义流程图的灵活性,这样一来,在引擎和流程流转控制这一个层面就会遇到很
- oracle 11g新特性Flashback data archive
daizj
oracle
1. 什么是flashback data archive
Flashback data archive是oracle 11g中引入的一个新特性。Flashback archive是一个新的数据库对象,用于存储一个或多表的历史数据。Flashback archive是一个逻辑对象,概念上类似于表空间。实际上flashback archive可以看作是存储一个或多个表的所有事务变化的逻辑空间。
- 多叉树:2-3-4树
dieslrae
树
平衡树多叉树,每个节点最多有4个子节点和3个数据项,2,3,4的含义是指一个节点可能含有的子节点的个数,效率比红黑树稍差.一般不允许出现重复关键字值.2-3-4树有以下特征:
1、有一个数据项的节点总是有2个子节点(称为2-节点)
2、有两个数据项的节点总是有3个子节点(称为3-节
- C语言学习七动态分配 malloc的使用
dcj3sjt126com
clanguagemalloc
/*
2013年3月15日15:16:24
malloc 就memory(内存) allocate(分配)的缩写
本程序没有实际含义,只是理解使用
*/
# include <stdio.h>
# include <malloc.h>
int main(void)
{
int i = 5; //分配了4个字节 静态分配
int * p
- Objective-C编码规范[译]
dcj3sjt126com
代码规范
原文链接 : The official raywenderlich.com Objective-C style guide
原文作者 : raywenderlich.com Team
译文出自 : raywenderlich.com Objective-C编码规范
译者 : Sam Lau
- 0.性能优化-目录
frank1234
性能优化
从今天开始笔者陆续发表一些性能测试相关的文章,主要是对自己前段时间学习的总结,由于水平有限,性能测试领域很深,本人理解的也比较浅,欢迎各位大咖批评指正。
主要内容包括:
一、性能测试指标
吞吐量、TPS、响应时间、负载、可扩展性、PV、思考时间
http://frank1234.iteye.com/blog/2180305
二、性能测试策略
生产环境相同 基准测试 预热等
htt
- Java父类取得子类传递的泛型参数Class类型
happyqing
java泛型父类子类Class
import java.lang.reflect.ParameterizedType;
import java.lang.reflect.Type;
import org.junit.Test;
abstract class BaseDao<T> {
public void getType() {
//Class<E> clazz =
- 跟我学SpringMVC目录汇总贴、PDF下载、源码下载
jinnianshilongnian
springMVC
----广告--------------------------------------------------------------
网站核心商详页开发
掌握Java技术,掌握并发/异步工具使用,熟悉spring、ibatis框架;
掌握数据库技术,表设计和索引优化,分库分表/读写分离;
了解缓存技术,熟练使用如Redis/Memcached等主流技术;
了解Ngin
- the HTTP rewrite module requires the PCRE library
流浪鱼
rewrite
./configure: error: the HTTP rewrite module requires the PCRE library.
模块依赖性Nginx需要依赖下面3个包
1. gzip 模块需要 zlib 库 ( 下载: http://www.zlib.net/ )
2. rewrite 模块需要 pcre 库 ( 下载: http://www.pcre.org/ )
3. s
- 第12章 Ajax(中)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Optimize query with Query Stripping in Web Intelligence
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Optimize+query+with+Query+Stripping+in+Web+Intelligence
and a very straightfoward video
http://www.sdn.sap.com/irj/scn/events?rid=/library/uuid/40ec3a0c-936
- Java开发者写SQL时常犯的10个错误
tomcat_oracle
javasql
1、不用PreparedStatements 有意思的是,在JDBC出现了许多年后的今天,这个错误依然出现在博客、论坛和邮件列表中,即便要记住和理解它是一件很简单的事。开发者不使用PreparedStatements的原因可能有如下几个: 他们对PreparedStatements不了解 他们认为使用PreparedStatements太慢了 他们认为写Prepar
- 世纪互联与结盟有感
阿尔萨斯
10月10日,世纪互联与(Foxcon)签约成立合资公司,有感。
全球电子制造业巨头(全球500强企业)与世纪互联共同看好IDC、云计算等业务在中国的增长空间,双方迅速果断出手,在资本层面上达成合作,此举体现了全球电子制造业巨头对世纪互联IDC业务的欣赏与信任,另一方面反映出世纪互联目前良好的运营状况与广阔的发展前景。
众所周知,精于电子产品制造(世界第一),对于世纪互联而言,能够与结盟