- 【北上广深杭大厂AI算法面试题】人工智能大模型篇...矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?
不想努力的小土博
机器学习基础算法优质笔记2人工智能算法矩阵深度学习线性代数
【北上广深杭大厂AI算法面试题】人工智能大模型篇…矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?【北上广深杭大厂AI算法面试题】人工智能大模型篇…矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?文章目录【北上广深杭大厂AI算法面试题】人工智能大模型篇...矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?前言DeepGEMM的亮点DeepGEMM的应用GEMM在深度学习中的
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- 什么是深度学习框架中的计算图?
杰瑞学AI
ComputerknowledgeNLP/LLMsAI/AGI深度学习人工智能pytorch
在深度学习框架中,计算图是核心的数据结构和抽象概念,它用来表示和定义深度学习模型的计算过程。我们可以把它想象成一个描述数学运算如何组合和执行的有向图。以下是计算图的关键要素和作用:节点:代表操作或变量。操作:数学运算,如加法(+)、乘法(*)、矩阵乘法(matmul)、激活函数(ReLU,sigmoid)、卷积(conv2d)、损失函数(cross_entropy)等。变量:通常是张量,即存储数据
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
零光速
数据分析numpy矩阵python开发语言数据结构
np.dot()np.dot()在NumPy中既可以用于向量的点积,也可以用于矩阵乘法,这两种运算的本质不同,取决于输入是向量还是矩阵。1.点积(DotProduct)定义当np.dot()的输入是两个一维向量时,计算的是点积,即两个向量的对应元素相乘并求和,结果是一个标量。公式对于两个n维向量a=[a1,a2,…,an]和b=[b1,b2,…,bn]点积的计算公式为:a⋅b=a1*b1+a2*b
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- pytorch小记(二十六):全面解读 PyTorch 的 `torch.matmul`
pytorch小记(二十六):全面解读PyTorch的`torch.matmul`PyTorch中的`torch.matmul`详解与使用指南一、什么是`torch.matmul`二、基本用法示例1.向量点积(1-D×1-D)2.二维矩阵乘法(2-D×2-D)3.批量矩阵乘法(≥3-D)4.向量与矩阵混合三、与`mm`、`bmm`的区别四、性能与数值稳定性五、典型应用场景六、注意事项七、总结在深度
- 从 O(n³) 到按需计算:Swift 玩转稀疏矩阵乘法
网罗开发
Swiftswift矩阵开发语言
文章目录摘要描述解题思路代码实现(Swift)分析这个代码是怎么做的?示例测试与输出结果时间复杂度空间复杂度总结摘要在大多数算法题里,矩阵乘法都不算太陌生了。但一旦题目提示“稀疏矩阵”——也就是大部分值都是0的那种,这就提示我们:有优化空间。这篇文章就用Swift带大家一步步搞懂怎么写一个更高效的稀疏矩阵乘法逻辑,顺便聊聊背后的思路。描述我们手上有两个矩阵,A和B,想把它们乘起来。和普通乘法不同的
- 【分治算法】【Python实现】Strassen矩阵乘法
「已注销」
#分治算法分治算法Python
文章目录@[toc]问题描述基础算法时间复杂性Strassen算法时间复杂性问题时间复杂性Python实现个人主页:丷从心·系列专栏:分治算法学习指南:算法学习指南问题描述设AAA和BBB是两个n×nn\timesnn×n矩阵,AAA和BBB的乘积矩阵CCC中元素cij=∑k=1naikbkjc_{ij}=\displaystyle\sum\limits_{k=1}^{n}{a_{ik}b_{kj
- 【算法设计与分析】(四)Strassen 矩阵
珹洺
#算法设计与分析算法矩阵线性代数
【算法设计与分析】(四)Strassen矩阵前言一、传统矩阵乘法二、Strassen矩阵乘法1.算法步骤2.效率提升三、实际应用场景四、算法的局限性与改进前言上一篇博客我们以生动形象的例子和清晰的步骤,为大家详细讲解了二分搜索技术与大整数乘法。接下来,这篇博客将带大家深入探索**Strassen矩阵**乘法,感受算法优化魅力。我的个人主页,欢迎来阅读我的其他文章https://blog.csdn.
- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- C语言实现4x4矩阵乘法的详细教程
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:矩阵乘法是线性代数的基本操作,在计算机科学的多个领域中有广泛应用。本文详细解释了如何用C语言编写程序来实现两个4x4矩阵的乘法。我们将探讨矩阵乘法的数学原理,并通过C语言的二维数组和嵌套循环来编写代码。该程序将为学习线性代数和C语言编程提供一个实践案例。1.矩阵乘法的数学原理矩阵乘法不仅在线性代数中占据着重要地位,也是计算机科学中不可或缺的一部分。了解矩阵乘法
- MIT线性代数第三讲笔记
可耳(keer)
线性代数笔记
视频链接https://www.youtube.com/watch?v=FX4C-JpTFgY3.1矩阵乘法以A∗B=CA*B=CA∗B=C为例,其中矩阵A是m∗nm*nm∗n,矩阵B是n∗pn*pn∗p,矩阵C则是m∗pm*pm∗p单个元素求矩阵C中的每一个元素,公式如下:cij=∑k=1naik∗bkjc_{ij}=\sum_{k=1}^na_{ik}*b_{kj}cij=k=1∑naik∗b
- CUDA核函数优化进阶:利用Shared Memory实现矩阵计算10倍加速
AI咸鱼保护协会
人工智能深度学习AI矩阵CUDA
在NVIDIAA100上优化1024×1024矩阵乘法时,共享内存策略将计算速度从3.2TFLOPS提升至31.5TFLOPS——本文将揭示如何通过内存访问优化突破GPU计算瓶颈。一、GlobalMemory的致命瓶颈1.1显存访问代价分析以矩阵乘法$C=A\timesB$为例,计算每个$C_{ij}$需访问A的一行和B的一列:GlobalMemory延迟:约400-800周期计算指令延迟:仅20
- 【AI大模型】14、Transformer架构深度解析:从并行计算到千亿参数模型的扩展密码
无心水
AI大模型人工智能transformer架构AI大模型Transformer模型扩展特征工程自动化特征工程
一、Transformer的基因密码:并行化架构的革命性突破(一)序列计算的历史性突破在Transformer诞生之前,RNN/LSTM等序列模型受困于串行计算的天然缺陷:时间复杂度瓶颈:处理长度为N的序列需O(N)时间,且无法并行,导致训练速度随序列长度呈线性下降。例如,LSTM处理512长度文本需512次递归计算,而Transformer仅需一次矩阵乘法。长距离依赖困境:通过隐藏状态传递信息的
- 算法导论第四章:分治策略的艺术与科学
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化
算法导论第四章:分治策略的艺术与科学本文是《算法导论》精讲专栏第四章,通过问题分解可视化、递归树分析和数学证明,结合完整C语言实现,深入解析分治策略的精髓。包含最大子数组、矩阵乘法、最近点对等经典问题的完整实现与优化技巧。1.分治策略:化繁为简的智慧1.1分治法核心思想原问题分解子问题1子问题2子问题n解决合并最终解分治三步曲:分解:将问题划分为规模更小的子问题解决:递归解决子问题(基线条件直接求
- 机器学习四剑客:Numpy、Pandas、PIL、Matplotlib 完全指南
摘取一颗天上星️
机器学习numpypandas
在机器学习领域,这四个Python库构成了数据处理和可视化的核心工具链。它们各司其职又紧密协作,形成了完整的数据处理流水线:1.Numpy:科学计算基石核心功能:多维数组操作与数值计算importnumpyasnp#创建数组arr=np.array([[1,2,3],[4,5,6]])#数学运算sines=np.sin(arr)#每个元素求正弦
[email protected]#矩阵乘法#高级索引s
- 拉力测试cuda pytorch 把 4070显卡拉满
MYH516
pytorch人工智能python
importtorchimporttimedefstress_test_gpu(matrix_size=16384,duration=300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size:矩阵维度大小,增大可提高计算复杂度duration:测试持续时间(秒)"""#检查CUDA是否可用ifnottorch.cuda.is_available():
- 矩阵乘法--Python
bj3281
矩阵pythonjava
矩阵乘法一、问题引入二、解题步骤1.思维导图2.解题步骤三、代码实现四、个人小结一、问题引入输入格式:第一行为n,m,k,表示A矩阵是n行m列,B矩阵是m行k列,n,m,k均小于20然后先后输入A和B两个矩阵,A矩阵n行m列,B矩阵m行k列,矩阵中每个元素的绝对值不会大于5000。输出格式:输出矩阵C,一共n行,每行k个整数,整数之间以一个空格分开。输入样例:在这里给出一组输入。例如:323111
- TPU结构总结
枫溪夜影
人工智能
TPU只完成推理过程,训练过程在GPU上完成。TPU可以像GPU一样通过PCIe总线接口挂载到现有的服务器上。设计目标是为了在TPU上完成所有的推理模型,从而减少和主机CPU的交互,进而满足2015年及今后的神经网络需求。下图是TPU的整体结构框图。主机通过PCIeGen3x16的总线发送TPU的指令到其中的指令buffer内,内部模块之间通过典型的256位宽通路连接。右上角的矩阵乘法单元是TPU
- MIT线性代数笔记03-矩阵乘法和逆矩阵
loneux
线性代数矩阵机器学习
LinearAlgebra-Lecture03矩阵乘法和逆矩阵GilbertStrang矩阵乘法对于矩阵乘法AB=C\bold{AB=C}AB=C主要有5种方法可用于计算:【前提条件】:A,B\bold{A},\bold{B}A,B两个矩阵行列要匹配,A\bold{A}A的列数要等于B\bold{B}B的行数。[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn][b11b12⋯
- 线性代数学习笔记3-2:矩阵乘法的理解
Insomnia_X
线性代数学习笔记线性代数矩阵学习
矩阵向量乘法计算矩阵乘法,有多种理解方式矩阵与向量的乘法,可以理解为矩阵各个列向量的线性组合[abcd][xy]=[ax+bycx+dy]=x[ac]+y[bd]\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}ax+by\\cx+dy\end{bmatrix}=x\begin{b
- 【PyTorch】CUDA基础知识
沐兮Krystal
NLPpytorch深度学习python
为了追求更快的速度,机器学习研究人员开始利用一些计算机中的特殊硬件。这些硬件原本是用来提升图形处理性能的,叫做显卡。NVIDIACUDA显卡中包含一个GPU,它能够以高度并行化的方式实现矩阵乘法。在很长一段时间,英伟达(NVIDIA)的GPU市场份额一直保持领先。他们有一套成熟的软件工具,可以充分利用硬件加速。这套软件框架就是CUDA。MVIDIA的竞争对手是AMD。在Python中使用CUDA创
- GPU深度学习性能的三驾马车:Tensor Core、内存带宽与内存层次结构
m0_70960708
笔记深度学习人工智能
这篇文章可以帮助我们了解GPU对深度学习性能的多个影响因素,从而帮助我们评估、选用GPU。本文将按照GPU各组件的重要程度顺序来进行介绍。TensorCore(张量计算核心)是最重要的因素,其次是GPU的内存带宽和缓存层次结构,最后是GPU的FLOPS。目录01TensorCore(张量计算核心)1.1在没有张量计算核心的情况下进行矩阵乘法运算1.2使用张量计算核心进行矩阵乘法运算1.3使用张量计
- 爆肝优化!FlashAttention-2性能飙升实战:从原理解析到PyTorch 2.2深度优化(附代码与Benchmark)
游戏人生的NPC
PyTorch2.2深度学习进阶pytorch人工智能python
一、引言:Transformer时代的注意力性能革命1.1传统注意力机制的性能瓶颈在大模型训练中,标准Transformer注意力面临三大痛点:内存爆炸:序列长度L=4096时,注意力内存占用达O(L²),A100显存仅能支持批量大小16计算低效:矩阵乘法占比超70%,GPU显存带宽利用率不足30%扩展性差:长序列场景下训练速度呈指数级下降,某千亿模型训练耗时超100天1.2FlashAttent
- 优化异构计算平台:hStreams框架的深度解析
你好像一条狗啊
异构计算hStreams框架流并发矩阵乘法性能优化
优化异构计算平台:hStreams框架的深度解析背景简介在异构计算领域,如何合理地分配和管理计算资源以优化性能是一个关键问题。本章节通过介绍hStreams框架,深入探讨了在异构计算平台中如何通过控制流并发和资源分配来提升矩阵乘法等计算任务的效率。异构计算与流并发异构计算通常涉及多种类型的处理器和加速器,如CPU和协处理器。通过合理配置这些资源,可以在不同的计算域中实现更高的并发性。在hStrea
- 统一思想认识
永夜-极光
思想
1.统一思想认识的基础,才能有的放矢
原因:
总有一种描述事物的方式最贴近本质,最容易让人理解.
如何让教育更轻松,在于找到最适合学生的方式.
难点在于,如何模拟对方的思维基础选择合适的方式. &
- Joda Time使用笔记
bylijinnan
javajoda time
Joda Time的介绍可以参考这篇文章:
http://www.ibm.com/developerworks/cn/java/j-jodatime.html
工作中也常常用到Joda Time,为了避免每次使用都查API,记录一下常用的用法:
/**
* DateTime变化(增减)
*/
@Tes
- FileUtils API
eksliang
FileUtilsFileUtils API
转载请出自出处:http://eksliang.iteye.com/blog/2217374 一、概述
这是一个Java操作文件的常用库,是Apache对java的IO包的封装,这里面有两个非常核心的类FilenameUtils跟FileUtils,其中FilenameUtils是对文件名操作的封装;FileUtils是文件封装,开发中对文件的操作,几乎都可以在这个框架里面找到。 非常的好用。
- 各种新兴技术
不懂事的小屁孩
技术
1:gradle Gradle 是以 Groovy 语言为基础,面向Java应用为主。基于DSL(领域特定语言)语法的自动化构建工具。
现在构建系统常用到maven工具,现在有更容易上手的gradle,
搭建java环境:
http://www.ibm.com/developerworks/cn/opensource/os-cn-gradle/
搭建android环境:
http://m
- tomcat6的https双向认证
酷的飞上天空
tomcat6
1.生成服务器端证书
keytool -genkey -keyalg RSA -dname "cn=localhost,ou=sango,o=none,l=china,st=beijing,c=cn" -alias server -keypass password -keystore server.jks -storepass password -validity 36
- 托管虚拟桌面市场势不可挡
蓝儿唯美
用户还需要冗余的数据中心,dinCloud的高级副总裁兼首席营销官Ali Din指出。该公司转售一个MSP可以让用户登录并管理和提供服务的用于DaaS的云自动化控制台,提供服务或者MSP也可以自己来控制。
在某些情况下,MSP会在dinCloud的云服务上进行服务分层,如监控和补丁管理。
MSP的利润空间将根据其参与的程度而有所不同,Din说。
“我们有一些合作伙伴负责将我们推荐给客户作为个
- spring学习——xml文件的配置
a-john
spring
在Spring的学习中,对于其xml文件的配置是必不可少的。在Spring的多种装配Bean的方式中,采用XML配置也是最常见的。以下是一个简单的XML配置文件:
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.or
- HDU 4342 History repeat itself 模拟
aijuans
模拟
来源:http://acm.hdu.edu.cn/showproblem.php?pid=4342
题意:首先让求第几个非平方数,然后求从1到该数之间的每个sqrt(i)的下取整的和。
思路:一个简单的模拟题目,但是由于数据范围大,需要用__int64。我们可以首先把平方数筛选出来,假如让求第n个非平方数的话,看n前面有多少个平方数,假设有x个,则第n个非平方数就是n+x。注意两种特殊情况,即
- java中最常用jar包的用途
asia007
java
java中最常用jar包的用途
jar包用途axis.jarSOAP引擎包commons-discovery-0.2.jar用来发现、查找和实现可插入式接口,提供一些一般类实例化、单件的生命周期管理的常用方法.jaxrpc.jarAxis运行所需要的组件包saaj.jar创建到端点的点到点连接的方法、创建并处理SOAP消息和附件的方法,以及接收和处理SOAP错误的方法. w
- ajax获取Struts框架中的json编码异常和Struts中的主控制器异常的解决办法
百合不是茶
jsjson编码返回异常
一:ajax获取自定义Struts框架中的json编码 出现以下 问题:
1,强制flush输出 json编码打印在首页
2, 不强制flush js会解析json 打印出来的是错误的jsp页面 却没有跳转到错误页面
3, ajax中的dataType的json 改为text 会
- JUnit使用的设计模式
bijian1013
java设计模式JUnit
JUnit源代码涉及使用了大量设计模式
1、模板方法模式(Template Method)
定义一个操作中的算法骨架,而将一些步骤延伸到子类中去,使得子类可以不改变一个算法的结构,即可重新定义该算法的某些特定步骤。这里需要复用的是算法的结构,也就是步骤,而步骤的实现可以在子类中完成。
 
- Linux常用命令(摘录)
sunjing
crondchkconfig
chkconfig --list 查看linux所有服务
chkconfig --add servicename 添加linux服务
netstat -apn | grep 8080 查看端口占用
env 查看所有环境变量
echo $JAVA_HOME 查看JAVA_HOME环境变量
安装编译器
yum install -y gcc
- 【Hadoop一】Hadoop伪集群环境搭建
bit1129
hadoop
结合网上多份文档,不断反复的修正hadoop启动和运行过程中出现的问题,终于把Hadoop2.5.2伪分布式安装起来,跑通了wordcount例子。Hadoop的安装复杂性的体现之一是,Hadoop的安装文档非常多,但是能一个文档走下来的少之又少,尤其是Hadoop不同版本的配置差异非常的大。Hadoop2.5.2于前两天发布,但是它的配置跟2.5.0,2.5.1没有分别。 &nb
- Anychart图表系列五之事件监听
白糖_
chart
创建图表事件监听非常简单:首先是通过addEventListener('监听类型',js监听方法)添加事件监听,然后在js监听方法中定义具体监听逻辑。
以钻取操作为例,当用户点击图表某一个point的时候弹出point的name和value,代码如下:
<script>
//创建AnyChart
var chart = new AnyChart();
//添加钻取操作&quo
- Web前端相关段子
braveCS
web前端
Web标准:结构、样式和行为分离
使用语义化标签
0)标签的语义:使用有良好语义的标签,能够很好地实现自我解释,方便搜索引擎理解网页结构,抓取重要内容。去样式后也会根据浏览器的默认样式很好的组织网页内容,具有很好的可读性,从而实现对特殊终端的兼容。
1)div和span是没有语义的:只是分别用作块级元素和行内元素的区域分隔符。当页面内标签无法满足设计需求时,才会适当添加div
- 编程之美-24点游戏
bylijinnan
编程之美
import java.util.ArrayList;
import java.util.Arrays;
import java.util.HashSet;
import java.util.List;
import java.util.Random;
import java.util.Set;
public class PointGame {
/**编程之美
- 主页面子页面传值总结
chengxuyuancsdn
总结
1、showModalDialog
returnValue是javascript中html的window对象的属性,目的是返回窗口值,当用window.showModalDialog函数打开一个IE的模式窗口时,用于返回窗口的值
主界面
var sonValue=window.showModalDialog("son.jsp");
子界面
window.retu
- [网络与经济]互联网+的含义
comsci
互联网+
互联网+后面是一个人的名字 = 网络控制系统
互联网+你的名字 = 网络个人数据库
每日提示:如果人觉得不舒服,千万不要外出到处走动,就呆在床上,玩玩手游,更不能够去开车,现在交通状况不
- oracle 创建视图 with check option
daizj
视图vieworalce
我们来看下面的例子:
create or replace view testview
as
select empno,ename from emp where ename like ‘M%’
with check option;
这里我们创建了一个视图,并使用了with check option来限制了视图。 然后我们来看一下视图包含的结果:
select * from testv
- ToastPlugin插件在cordova3.3下使用
dibov
Cordova
自己开发的Todos应用,想实现“
再按一次返回键退出程序 ”的功能,采用网上的ToastPlugins插件,发现代码或文章基本都是老版本,运行问题比较多。折腾了好久才弄好。下面吧基于cordova3.3下的ToastPlugins相关代码共享。
ToastPlugin.java
package&nbs
- C语言22个系统函数
dcj3sjt126com
cfunction
C语言系统函数一、数学函数下列函数存放在math.h头文件中Double floor(double num) 求出不大于num的最大数。Double fmod(x, y) 求整数x/y的余数。Double frexp(num, exp); double num; int *exp; 将num分为数字部分(尾数)x和 以2位的指数部分n,即num=x*2n,指数n存放在exp指向的变量中,返回x。D
- 开发一个类的流程
dcj3sjt126com
开发
本人近日根据自己的开发经验总结了一个类的开发流程。这个流程适用于单独开发的构件,并不适用于对一个项目中的系统对象开发。开发出的类可以存入私人类库,供以后复用。
以下是开发流程:
1. 明确类的功能,抽象出类的大概结构
2. 初步设想类的接口
3. 类名设计(驼峰式命名)
4. 属性设置(权限设置)
判断某些变量是否有必要作为成员属
- java 并发
shuizhaosi888
java 并发
能够写出高伸缩性的并发是一门艺术
在JAVA SE5中新增了3个包
java.util.concurrent
java.util.concurrent.atomic
java.util.concurrent.locks
在java的内存模型中,类的实例字段、静态字段和构成数组的对象元素都会被多个线程所共享,局部变量与方法参数都是线程私有的,不会被共享。
- Spring Security(11)——匿名认证
234390216
Spring SecurityROLE_ANNOYMOUS匿名
匿名认证
目录
1.1 配置
1.2 AuthenticationTrustResolver
对于匿名访问的用户,Spring Security支持为其建立一个匿名的AnonymousAuthenticat
- NODEJS项目实践0.2[ express,ajax通信...]
逐行分析JS源代码
Ajaxnodejsexpress
一、前言
通过上节学习,我们已经 ubuntu系统搭建了一个可以访问的nodejs系统,并做了nginx转发。本节原要做web端服务 及 mongodb的存取,但写着写着,web端就
- 在Struts2 的Action中怎样获取表单提交上来的多个checkbox的值
lhbthanks
javahtmlstrutscheckbox
第一种方法:获取结果String类型
在 Action 中获得的是一个 String 型数据,每一个被选中的 checkbox 的 value 被拼接在一起,每个值之间以逗号隔开(,)。
所以在 Action 中定义一个跟 checkbox 的 name 同名的属性来接收这些被选中的 checkbox 的 value 即可。
以下是实现的代码:
前台 HTML 代码:
- 003.Kafka基本概念
nweiren
hadoopkafka
Kafka基本概念:Topic、Partition、Message、Producer、Broker、Consumer。 Topic: 消息源(Message)的分类。 Partition: Topic物理上的分组,一
- Linux环境下安装JDK
roadrunners
jdklinux
1、准备工作
创建JDK的安装目录:
mkdir -p /usr/java/
下载JDK,找到适合自己系统的JDK版本进行下载:
http://www.oracle.com/technetwork/java/javase/downloads/index.html
把JDK安装包下载到/usr/java/目录,然后进行解压:
tar -zxvf jre-7
- Linux忘记root密码的解决思路
tomcat_oracle
linux
1:使用同版本的linux启动系统,chroot到忘记密码的根分区passwd改密码 2:grub启动菜单中加入init=/bin/bash进入系统,不过这时挂载的是只读分区。根据系统的分区情况进一步判断. 3: grub启动菜单中加入 single以单用户进入系统. 4:用以上方法mount到根分区把/etc/passwd中的root密码去除 例如: ro
- 跨浏览器 HTML5 postMessage 方法以及 message 事件模拟实现
xueyou
jsonpjquery框架UIhtml5
postMessage 是 HTML5 新方法,它可以实现跨域窗口之间通讯。到目前为止,只有 IE8+, Firefox 3, Opera 9, Chrome 3和 Safari 4 支持,而本篇文章主要讲述 postMessage 方法与 message 事件跨浏览器实现。postMessage 方法 JSONP 技术不一样,前者是前端擅长跨域文档数据即时通讯,后者擅长针对跨域服务端数据通讯,p