- 【北上广深杭大厂AI算法面试题】人工智能大模型篇...矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?
不想努力的小土博
机器学习基础算法优质笔记2人工智能算法矩阵深度学习线性代数
【北上广深杭大厂AI算法面试题】人工智能大模型篇…矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?【北上广深杭大厂AI算法面试题】人工智能大模型篇…矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?文章目录【北上广深杭大厂AI算法面试题】人工智能大模型篇...矩阵乘法GEMM!以及为什么说GEMM是深度学习的核心?前言DeepGEMM的亮点DeepGEMM的应用GEMM在深度学习中的
- NumPy-@运算符详解
GG不是gg
numpynumpy
NumPy-@运算符详解一、@运算符的起源与设计目标1.从数学到代码:符号的统一2.设计目标二、@运算符的核心语法与运算规则1.基础用法:二维矩阵乘法2.一维向量的矩阵语义3.高维数组:批次矩阵运算4.广播机制:灵活的形状匹配三、@运算符与其他乘法方式的核心区别1.对比`np.dot()`2.对比元素级乘法`*`3.对比`np.matrix`的`*`运算符四、典型应用场景:从基础到高阶1.深度学习
- GNN--知识图谱(逐步贯通基础到项目实践)
峙峙峙
图神经网络知识图谱人工智能
原文仓库链接:知识图谱–贯通已有知识地图记录知识关系图谱和跨学科碰撞新启发知识图谱mermaid可能需要下载插件才能渲染线性代数神经网络深度学习框架硬件加速图论GNN框架交叉理解前向理解定义:前向理解:A–>B,A为B的基础铺垫知识,通过深入学习A对B有更好的理解01.LinearAlgebraforLinearLayerofNN从线性代数行列变换的角度看神经网络中的线性层线性代数矩阵乘法,可以理
- 机器学习的数学基础-线性代数
本文用于复习并记录机器学习中的相关数学基础,仅供学习参考。很多总结和例子来源于mml项目(mml-book.github.io)十分感谢这本书的作者,PS:这本书目前没有中文版。线性代数线性方程组矩阵矩阵的加法与乘法矩阵加法矩阵乘法单位矩阵与标量相乘逆与转置逆转置解决线性方程组特解与通解高斯消元法初级变换应用:“-1”trick应用:求逆总结-如何解决线性方程组?向量空间群向量空间向量子空间线性独
- 什么是深度学习框架中的计算图?
杰瑞学AI
ComputerknowledgeNLP/LLMsAI/AGI深度学习人工智能pytorch
在深度学习框架中,计算图是核心的数据结构和抽象概念,它用来表示和定义深度学习模型的计算过程。我们可以把它想象成一个描述数学运算如何组合和执行的有向图。以下是计算图的关键要素和作用:节点:代表操作或变量。操作:数学运算,如加法(+)、乘法(*)、矩阵乘法(matmul)、激活函数(ReLU,sigmoid)、卷积(conv2d)、损失函数(cross_entropy)等。变量:通常是张量,即存储数据
- NumPy-核心函数np.matmul()深入解析
GG不是gg
numpynumpy
NumPy-核心函数np.matmul深入解析一、矩阵乘法的本质与`np.matmul()`的设计目标1.数学定义:从二维到多维的扩展2.设计目标二、`np.matmul()`核心语法与参数解析函数签名核心特性三、多维场景下的核心运算逻辑1.二维矩阵乘法:基础用法2.一维向量与二维矩阵相乘3.高维数组:批次矩阵乘法4.广播机制下的形状匹配四、与`np.dot()`和`*`运算符的核心区别1.对比`
- 数据处理与统计分析——03-Numpy的np.dot()方法&点积与矩阵乘法
零光速
数据分析numpy矩阵python开发语言数据结构
np.dot()np.dot()在NumPy中既可以用于向量的点积,也可以用于矩阵乘法,这两种运算的本质不同,取决于输入是向量还是矩阵。1.点积(DotProduct)定义当np.dot()的输入是两个一维向量时,计算的是点积,即两个向量的对应元素相乘并求和,结果是一个标量。公式对于两个n维向量a=[a1,a2,…,an]和b=[b1,b2,…,bn]点积的计算公式为:a⋅b=a1*b1+a2*b
- 从零实现Llama3:深入解析Transformer架构与实现细节
祁婉菲Flora
从零实现Llama3:深入解析Transformer架构与实现细节llama3-from-scratchllama3一次实现一个矩阵乘法。项目地址:https://gitcode.com/gh_mirrors/ll/llama3-from-scratch引言本文将深入探讨如何从零开始实现Llama3语言模型。我们将从最基本的张量操作开始,逐步构建完整的Transformer架构。通过这个过程,读者
- pytorch小记(二十六):全面解读 PyTorch 的 `torch.matmul`
pytorch小记(二十六):全面解读PyTorch的`torch.matmul`PyTorch中的`torch.matmul`详解与使用指南一、什么是`torch.matmul`二、基本用法示例1.向量点积(1-D×1-D)2.二维矩阵乘法(2-D×2-D)3.批量矩阵乘法(≥3-D)4.向量与矩阵混合三、与`mm`、`bmm`的区别四、性能与数值稳定性五、典型应用场景六、注意事项七、总结在深度
- 从 O(n³) 到按需计算:Swift 玩转稀疏矩阵乘法
网罗开发
Swiftswift矩阵开发语言
文章目录摘要描述解题思路代码实现(Swift)分析这个代码是怎么做的?示例测试与输出结果时间复杂度空间复杂度总结摘要在大多数算法题里,矩阵乘法都不算太陌生了。但一旦题目提示“稀疏矩阵”——也就是大部分值都是0的那种,这就提示我们:有优化空间。这篇文章就用Swift带大家一步步搞懂怎么写一个更高效的稀疏矩阵乘法逻辑,顺便聊聊背后的思路。描述我们手上有两个矩阵,A和B,想把它们乘起来。和普通乘法不同的
- 【分治算法】【Python实现】Strassen矩阵乘法
「已注销」
#分治算法分治算法Python
文章目录@[toc]问题描述基础算法时间复杂性Strassen算法时间复杂性问题时间复杂性Python实现个人主页:丷从心·系列专栏:分治算法学习指南:算法学习指南问题描述设AAA和BBB是两个n×nn\timesnn×n矩阵,AAA和BBB的乘积矩阵CCC中元素cij=∑k=1naikbkjc_{ij}=\displaystyle\sum\limits_{k=1}^{n}{a_{ik}b_{kj
- 【算法设计与分析】(四)Strassen 矩阵
珹洺
#算法设计与分析算法矩阵线性代数
【算法设计与分析】(四)Strassen矩阵前言一、传统矩阵乘法二、Strassen矩阵乘法1.算法步骤2.效率提升三、实际应用场景四、算法的局限性与改进前言上一篇博客我们以生动形象的例子和清晰的步骤,为大家详细讲解了二分搜索技术与大整数乘法。接下来,这篇博客将带大家深入探索**Strassen矩阵**乘法,感受算法优化魅力。我的个人主页,欢迎来阅读我的其他文章https://blog.csdn.
- 多头注意力机制中全连接函数
不知更鸟
深度学习
在神经网络(特别是Transformer中的多头注意力机制)中,全连接函数(FullyConnectedLayer,FCLayer)通常指的是一个线性变换层,即nn.Linear在PyTorch中的实现。它本质上是一个矩阵乘法加上偏置(bias)的操作,用于对输入数据进行线性变换。1.全连接函数(nn.Linear)是什么?nn.Linear(d_model,d_model)表示一个全连接层,它的
- GNU Octave 基础教程(8):GNU Octave 常用数学函数
方博士AI机器人
GNUOctave基础教程机器学习算法人工智能
目录一、基本算术运二、初等数学函数三、三角函数与反三角函数四、统计函数五、复数与其他函数✅小结下一讲预告GNUOctave内置了大量数学函数,涵盖初等数学、线性代数、复数运算、统计函数等,非常适合科研、工程计算使用。本节将系统地梳理Octave中最常用的数学函数,并附上示例代码与输出结果。一、基本算术运运算符号/函数示例加法+a+b减法-a-b乘法*/.*A*B(矩阵乘法),A.*B(逐元素)除法
- 数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全
猫头虎技术团队
已解决的Bug专栏线性代数opencv数据挖掘语音识别计算机视觉人工智能机器学习
数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全机器学习/深度学习的核心算法背后,往往需要用到矩阵运算、特征向量、梯度下降等;如果连矩阵乘法、特征值、偏导数都没搞懂,就很难理解模型原理。摘要文章目录数学基础(线性代数、概率统计、微积分)缺乏导致概念难以理解问题大全摘要1.开发场景介绍1.1场景背景1.2技术细节2.开发环境3.问题分析3.1线性代数缺失带来的挑战3.2概率统计短板
- C语言实现4x4矩阵乘法的详细教程
Kimgoeunlaogong
本文还有配套的精品资源,点击获取简介:矩阵乘法是线性代数的基本操作,在计算机科学的多个领域中有广泛应用。本文详细解释了如何用C语言编写程序来实现两个4x4矩阵的乘法。我们将探讨矩阵乘法的数学原理,并通过C语言的二维数组和嵌套循环来编写代码。该程序将为学习线性代数和C语言编程提供一个实践案例。1.矩阵乘法的数学原理矩阵乘法不仅在线性代数中占据着重要地位,也是计算机科学中不可或缺的一部分。了解矩阵乘法
- MIT线性代数第三讲笔记
可耳(keer)
线性代数笔记
视频链接https://www.youtube.com/watch?v=FX4C-JpTFgY3.1矩阵乘法以A∗B=CA*B=CA∗B=C为例,其中矩阵A是m∗nm*nm∗n,矩阵B是n∗pn*pn∗p,矩阵C则是m∗pm*pm∗p单个元素求矩阵C中的每一个元素,公式如下:cij=∑k=1naik∗bkjc_{ij}=\sum_{k=1}^na_{ik}*b_{kj}cij=k=1∑naik∗b
- CUDA核函数优化进阶:利用Shared Memory实现矩阵计算10倍加速
AI咸鱼保护协会
人工智能深度学习AI矩阵CUDA
在NVIDIAA100上优化1024×1024矩阵乘法时,共享内存策略将计算速度从3.2TFLOPS提升至31.5TFLOPS——本文将揭示如何通过内存访问优化突破GPU计算瓶颈。一、GlobalMemory的致命瓶颈1.1显存访问代价分析以矩阵乘法$C=A\timesB$为例,计算每个$C_{ij}$需访问A的一行和B的一列:GlobalMemory延迟:约400-800周期计算指令延迟:仅20
- 【AI大模型】14、Transformer架构深度解析:从并行计算到千亿参数模型的扩展密码
无心水
AI大模型人工智能transformer架构AI大模型Transformer模型扩展特征工程自动化特征工程
一、Transformer的基因密码:并行化架构的革命性突破(一)序列计算的历史性突破在Transformer诞生之前,RNN/LSTM等序列模型受困于串行计算的天然缺陷:时间复杂度瓶颈:处理长度为N的序列需O(N)时间,且无法并行,导致训练速度随序列长度呈线性下降。例如,LSTM处理512长度文本需512次递归计算,而Transformer仅需一次矩阵乘法。长距离依赖困境:通过隐藏状态传递信息的
- 算法导论第四章:分治策略的艺术与科学
W说编程
算法导论数据结构与算法算法数据结构c语言性能优化
算法导论第四章:分治策略的艺术与科学本文是《算法导论》精讲专栏第四章,通过问题分解可视化、递归树分析和数学证明,结合完整C语言实现,深入解析分治策略的精髓。包含最大子数组、矩阵乘法、最近点对等经典问题的完整实现与优化技巧。1.分治策略:化繁为简的智慧1.1分治法核心思想原问题分解子问题1子问题2子问题n解决合并最终解分治三步曲:分解:将问题划分为规模更小的子问题解决:递归解决子问题(基线条件直接求
- 机器学习四剑客:Numpy、Pandas、PIL、Matplotlib 完全指南
摘取一颗天上星️
机器学习numpypandas
在机器学习领域,这四个Python库构成了数据处理和可视化的核心工具链。它们各司其职又紧密协作,形成了完整的数据处理流水线:1.Numpy:科学计算基石核心功能:多维数组操作与数值计算importnumpyasnp#创建数组arr=np.array([[1,2,3],[4,5,6]])#数学运算sines=np.sin(arr)#每个元素求正弦
[email protected]#矩阵乘法#高级索引s
- 拉力测试cuda pytorch 把 4070显卡拉满
MYH516
pytorch人工智能python
importtorchimporttimedefstress_test_gpu(matrix_size=16384,duration=300):"""对GPU进行压力测试,通过持续的矩阵乘法来最大化GPU利用率参数:matrix_size:矩阵维度大小,增大可提高计算复杂度duration:测试持续时间(秒)"""#检查CUDA是否可用ifnottorch.cuda.is_available():
- 矩阵乘法--Python
bj3281
矩阵pythonjava
矩阵乘法一、问题引入二、解题步骤1.思维导图2.解题步骤三、代码实现四、个人小结一、问题引入输入格式:第一行为n,m,k,表示A矩阵是n行m列,B矩阵是m行k列,n,m,k均小于20然后先后输入A和B两个矩阵,A矩阵n行m列,B矩阵m行k列,矩阵中每个元素的绝对值不会大于5000。输出格式:输出矩阵C,一共n行,每行k个整数,整数之间以一个空格分开。输入样例:在这里给出一组输入。例如:323111
- TPU结构总结
枫溪夜影
人工智能
TPU只完成推理过程,训练过程在GPU上完成。TPU可以像GPU一样通过PCIe总线接口挂载到现有的服务器上。设计目标是为了在TPU上完成所有的推理模型,从而减少和主机CPU的交互,进而满足2015年及今后的神经网络需求。下图是TPU的整体结构框图。主机通过PCIeGen3x16的总线发送TPU的指令到其中的指令buffer内,内部模块之间通过典型的256位宽通路连接。右上角的矩阵乘法单元是TPU
- MIT线性代数笔记03-矩阵乘法和逆矩阵
loneux
线性代数矩阵机器学习
LinearAlgebra-Lecture03矩阵乘法和逆矩阵GilbertStrang矩阵乘法对于矩阵乘法AB=C\bold{AB=C}AB=C主要有5种方法可用于计算:【前提条件】:A,B\bold{A},\bold{B}A,B两个矩阵行列要匹配,A\bold{A}A的列数要等于B\bold{B}B的行数。[a11a12⋯a1na21a22⋯a2n⋮⋮⋱⋮am1am2⋯amn][b11b12⋯
- 线性代数学习笔记3-2:矩阵乘法的理解
Insomnia_X
线性代数学习笔记线性代数矩阵学习
矩阵向量乘法计算矩阵乘法,有多种理解方式矩阵与向量的乘法,可以理解为矩阵各个列向量的线性组合[abcd][xy]=[ax+bycx+dy]=x[ac]+y[bd]\begin{bmatrix}a&b\\c&d\end{bmatrix}\begin{bmatrix}x\\y\end{bmatrix}=\begin{bmatrix}ax+by\\cx+dy\end{bmatrix}=x\begin{b
- 【PyTorch】CUDA基础知识
沐兮Krystal
NLPpytorch深度学习python
为了追求更快的速度,机器学习研究人员开始利用一些计算机中的特殊硬件。这些硬件原本是用来提升图形处理性能的,叫做显卡。NVIDIACUDA显卡中包含一个GPU,它能够以高度并行化的方式实现矩阵乘法。在很长一段时间,英伟达(NVIDIA)的GPU市场份额一直保持领先。他们有一套成熟的软件工具,可以充分利用硬件加速。这套软件框架就是CUDA。MVIDIA的竞争对手是AMD。在Python中使用CUDA创
- GPU深度学习性能的三驾马车:Tensor Core、内存带宽与内存层次结构
m0_70960708
笔记深度学习人工智能
这篇文章可以帮助我们了解GPU对深度学习性能的多个影响因素,从而帮助我们评估、选用GPU。本文将按照GPU各组件的重要程度顺序来进行介绍。TensorCore(张量计算核心)是最重要的因素,其次是GPU的内存带宽和缓存层次结构,最后是GPU的FLOPS。目录01TensorCore(张量计算核心)1.1在没有张量计算核心的情况下进行矩阵乘法运算1.2使用张量计算核心进行矩阵乘法运算1.3使用张量计
- 爆肝优化!FlashAttention-2性能飙升实战:从原理解析到PyTorch 2.2深度优化(附代码与Benchmark)
游戏人生的NPC
PyTorch2.2深度学习进阶pytorch人工智能python
一、引言:Transformer时代的注意力性能革命1.1传统注意力机制的性能瓶颈在大模型训练中,标准Transformer注意力面临三大痛点:内存爆炸:序列长度L=4096时,注意力内存占用达O(L²),A100显存仅能支持批量大小16计算低效:矩阵乘法占比超70%,GPU显存带宽利用率不足30%扩展性差:长序列场景下训练速度呈指数级下降,某千亿模型训练耗时超100天1.2FlashAttent
- 优化异构计算平台:hStreams框架的深度解析
你好像一条狗啊
异构计算hStreams框架流并发矩阵乘法性能优化
优化异构计算平台:hStreams框架的深度解析背景简介在异构计算领域,如何合理地分配和管理计算资源以优化性能是一个关键问题。本章节通过介绍hStreams框架,深入探讨了在异构计算平台中如何通过控制流并发和资源分配来提升矩阵乘法等计算任务的效率。异构计算与流并发异构计算通常涉及多种类型的处理器和加速器,如CPU和协处理器。通过合理配置这些资源,可以在不同的计算域中实现更高的并发性。在hStrea
- web前段跨域nginx代理配置
刘正强
nginxcmsWeb
nginx代理配置可参考server部分
server {
listen 80;
server_name localhost;
- spring学习笔记
caoyong
spring
一、概述
a>、核心技术 : IOC与AOP
b>、开发为什么需要面向接口而不是实现
接口降低一个组件与整个系统的藕合程度,当该组件不满足系统需求时,可以很容易的将该组件从系统中替换掉,而不会对整个系统产生大的影响
c>、面向接口编口编程的难点在于如何对接口进行初始化,(使用工厂设计模式)
- Eclipse打开workspace提示工作空间不可用
0624chenhong
eclipse
做项目的时候,难免会用到整个团队的代码,或者上一任同事创建的workspace,
1.电脑切换账号后,Eclipse打开时,会提示Eclipse对应的目录锁定,无法访问,根据提示,找到对应目录,G:\eclipse\configuration\org.eclipse.osgi\.manager,其中文件.fileTableLock提示被锁定。
解决办法,删掉.fileTableLock文件,重
- Javascript 面向对面写法的必要性?
一炮送你回车库
JavaScript
现在Javascript面向对象的方式来写页面很流行,什么纯javascript的mvc框架都出来了:ember
这是javascript层的mvc框架哦,不是j2ee的mvc框架
我想说的是,javascript本来就不是一门面向对象的语言,用它写出来的面向对象的程序,本身就有些别扭,很多人提到js的面向对象首先提的是:复用性。那么我请问你写的js里有多少是可以复用的,用fu
- js array对象的迭代方法
换个号韩国红果果
array
1.forEach 该方法接受一个函数作为参数, 对数组中的每个元素
使用该函数 return 语句失效
function square(num) {
print(num, num * num);
}
var nums = [1,2,3,4,5,6,7,8,9,10];
nums.forEach(square);
2.every 该方法接受一个返回值为布尔类型
- 对Hibernate缓存机制的理解
归来朝歌
session一级缓存对象持久化
在hibernate中session一级缓存机制中,有这么一种情况:
问题描述:我需要new一个对象,对它的几个字段赋值,但是有一些属性并没有进行赋值,然后调用
session.save()方法,在提交事务后,会出现这样的情况:
1:在数据库中有默认属性的字段的值为空
2:既然是持久化对象,为什么在最后对象拿不到默认属性的值?
通过调试后解决方案如下:
对于问题一,如你在数据库里设置了
- WebService调用错误合集
darkranger
webservice
Java.Lang.NoClassDefFoundError: Org/Apache/Commons/Discovery/Tools/DiscoverSingleton
调用接口出错,
一个简单的WebService
import org.apache.axis.client.Call;import org.apache.axis.client.Service;
首先必不可
- JSP和Servlet的中文乱码处理
aijuans
Java Web
JSP和Servlet的中文乱码处理
前几天学习了JSP和Servlet中有关中文乱码的一些问题,写成了博客,今天进行更新一下。应该是可以解决日常的乱码问题了。现在作以下总结希望对需要的人有所帮助。我也是刚学,所以有不足之处希望谅解。
一、表单提交时出现乱码:
在进行表单提交的时候,经常提交一些中文,自然就避免不了出现中文乱码的情况,对于表单来说有两种提交方式:get和post提交方式。所以
- 面试经典六问
atongyeye
工作面试
题记:因为我不善沟通,所以在面试中经常碰壁,看了网上太多面试宝典,基本上不太靠谱。只好自己总结,并试着根据最近工作情况完成个人答案。以备不时之需。
以下是人事了解应聘者情况的最典型的六个问题:
1 简单自我介绍
关于这个问题,主要为了弄清两件事,一是了解应聘者的背景,二是应聘者将这些背景信息组织成合适语言的能力。
我的回答:(针对技术面试回答,如果是人事面试,可以就掌
- contentResolver.query()参数详解
百合不是茶
androidquery()详解
收藏csdn的博客,介绍的比较详细,新手值得一看 1.获取联系人姓名
一个简单的例子,这个函数获取设备上所有的联系人ID和联系人NAME。
[java]
view plain
copy
public void fetchAllContacts() {
 
- ora-00054:resource busy and acquire with nowait specified解决方法
bijian1013
oracle数据库killnowait
当某个数据库用户在数据库中插入、更新、删除一个表的数据,或者增加一个表的主键时或者表的索引时,常常会出现ora-00054:resource busy and acquire with nowait specified这样的错误。主要是因为有事务正在执行(或者事务已经被锁),所有导致执行不成功。
1.下面的语句
- web 开发乱码
征客丶
springWeb
以下前端都是 utf-8 字符集编码
一、后台接收
1.1、 get 请求乱码
get 请求中,请求参数在请求头中;
乱码解决方法:
a、通过在web 服务器中配置编码格式:tomcat 中,在 Connector 中添加URIEncoding="UTF-8";
1.2、post 请求乱码
post 请求中,请求参数分两部份,
1.2.1、url?参数,
- 【Spark十六】: Spark SQL第二部分数据源和注册表的几种方式
bit1129
spark
Spark SQL数据源和表的Schema
case class
apply schema
parquet
json
JSON数据源 准备源数据
{"name":"Jack", "age": 12, "addr":{"city":"beijing&
- JVM学习之:调优总结 -Xms -Xmx -Xmn -Xss
BlueSkator
-Xss-Xmn-Xms-Xmx
堆大小设置JVM 中最大堆大小有三方面限制:相关操作系统的数据模型(32-bt还是64-bit)限制;系统的可用虚拟内存限制;系统的可用物理内存限制。32位系统下,一般限制在1.5G~2G;64为操作系统对内存无限制。我在Windows Server 2003 系统,3.5G物理内存,JDK5.0下测试,最大可设置为1478m。典型设置:
java -Xmx355
- jqGrid 各种参数 详解(转帖)
BreakingBad
jqGrid
jqGrid 各种参数 详解 分类:
源代码分享
个人随笔请勿参考
解决开发问题 2012-05-09 20:29 84282人阅读
评论(22)
收藏
举报
jquery
服务器
parameters
function
ajax
string
- 读《研磨设计模式》-代码笔记-代理模式-Proxy
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.lang.reflect.InvocationHandler;
import java.lang.reflect.Method;
import java.lang.reflect.Proxy;
/*
* 下面
- 应用升级iOS8中遇到的一些问题
chenhbc
ios8升级iOS8
1、很奇怪的问题,登录界面,有一个判断,如果不存在某个值,则跳转到设置界面,ios8之前的系统都可以正常跳转,iOS8中代码已经执行到下一个界面了,但界面并没有跳转过去,而且这个值如果设置过的话,也是可以正常跳转过去的,这个问题纠结了两天多,之前的判断我是在
-(void)viewWillAppear:(BOOL)animated
中写的,最终的解决办法是把判断写在
-(void
- 工作流与自组织的关系?
comsci
设计模式工作
目前的工作流系统中的节点及其相互之间的连接是事先根据管理的实际需要而绘制好的,这种固定的模式在实际的运用中会受到很多限制,特别是节点之间的依存关系是固定的,节点的处理不考虑到流程整体的运行情况,细节和整体间的关系是脱节的,那么我们提出一个新的观点,一个流程是否可以通过节点的自组织运动来自动生成呢?这种流程有什么实际意义呢?
这里有篇论文,摘要是:“针对网格中的服务
- Oracle11.2新特性之INSERT提示IGNORE_ROW_ON_DUPKEY_INDEX
daizj
oracle
insert提示IGNORE_ROW_ON_DUPKEY_INDEX
转自:http://space.itpub.net/18922393/viewspace-752123
在 insert into tablea ...select * from tableb中,如果存在唯一约束,会导致整个insert操作失败。使用IGNORE_ROW_ON_DUPKEY_INDEX提示,会忽略唯一
- 二叉树:堆
dieslrae
二叉树
这里说的堆其实是一个完全二叉树,每个节点都不小于自己的子节点,不要跟jvm的堆搞混了.由于是完全二叉树,可以用数组来构建.用数组构建树的规则很简单:
一个节点的父节点下标为: (当前下标 - 1)/2
一个节点的左节点下标为: 当前下标 * 2 + 1
&
- C语言学习八结构体
dcj3sjt126com
c
为什么需要结构体,看代码
# include <stdio.h>
struct Student //定义一个学生类型,里面有age, score, sex, 然后可以定义这个类型的变量
{
int age;
float score;
char sex;
}
int main(void)
{
struct Student st = {80, 66.6,
- centos安装golang
dcj3sjt126com
centos
#在国内镜像下载二进制包
wget -c http://www.golangtc.com/static/go/go1.4.1.linux-amd64.tar.gz
tar -C /usr/local -xzf go1.4.1.linux-amd64.tar.gz
#把golang的bin目录加入全局环境变量
cat >>/etc/profile<
- 10.性能优化-监控-MySQL慢查询
frank1234
性能优化MySQL慢查询
1.记录慢查询配置
show variables where variable_name like 'slow%' ; --查看默认日志路径
查询结果:--不用的机器可能不同
slow_query_log_file=/var/lib/mysql/centos-slow.log
修改mysqld配置文件:/usr /my.cnf[一般在/etc/my.cnf,本机在/user/my.cn
- Java父类取得子类类名
happyqing
javathis父类子类类名
在继承关系中,不管父类还是子类,这些类里面的this都代表了最终new出来的那个类的实例对象,所以在父类中你可以用this获取到子类的信息!
package com.urthinker.module.test;
import org.junit.Test;
abstract class BaseDao<T> {
public void
- Spring3.2新注解@ControllerAdvice
jinnianshilongnian
@Controller
@ControllerAdvice,是spring3.2提供的新注解,从名字上可以看出大体意思是控制器增强。让我们先看看@ControllerAdvice的实现:
@Target(ElementType.TYPE)
@Retention(RetentionPolicy.RUNTIME)
@Documented
@Component
public @interface Co
- Java spring mvc多数据源配置
liuxihope
spring
转自:http://www.itpub.net/thread-1906608-1-1.html
1、首先配置两个数据库
<bean id="dataSourceA" class="org.apache.commons.dbcp.BasicDataSource" destroy-method="close&quo
- 第12章 Ajax(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- BW / Universe Mappings
blueoxygen
BO
BW Element
OLAP Universe Element
Cube Dimension
Class
Charateristic
A class with dimension and detail objects (Detail objects for key and desription)
Hi
- Java开发熟手该当心的11个错误
tomcat_oracle
java多线程工作单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 推行国产操作系统的优劣
yananay
windowslinux国产操作系统
最近刮起了一股风,就是去“国外货”。从应用程序开始,到基础的系统,数据库,现在已经刮到操作系统了。原因就是“棱镜计划”,使我们终于认识到了国外货的危害,开始重视起了信息安全。操作系统是计算机的灵魂。既然是灵魂,为了信息安全,那我们就自然要使用和推行国货。可是,一味地推行,是否就一定正确呢?
先说说信息安全。其实从很早以来大家就在讨论信息安全。很多年以前,就据传某世界级的网络设备制造商生产的交