- 博客摘录「 yolo 11从原理、创新点、训练到部署(yolov11代码+教程)」2025年4月28日
G.547
笔记
2.1新的Backbone设计YOLOv11引入了一个改进的Backbone网络架构,采用了CSPNet(CrossStagePartialNetwork)的升级版。CSPNet的引入使得YOLOv11在计算量相对较低的情况下能够更有效地提取深度特征,从而提高模型的表达能力。具体来说,CSPNet通过将特征图进行部分跨层连接,减少了冗余梯度信息,提高了模型的学习效率和泛化能力。2.2SPPF(Sp
- 【语义分割专栏】4:deeplab系列实战篇(附上完整可运行的代码pytorch)
fouen
语义分割pytorch人工智能python计算机视觉深度学习
文章目录前言Deeplab系列全流程代码模型搭建(model)backbone的搭建Deeplabv1Deeplabv2Deeplabv3Deeplabv3+数据处理(dataloader)评价指标(metric)训练流程(train)模型测试(test)效果图结语前言Deeplab系列原理篇讲解:【语义分割专栏】4:deeplab系列原理篇_deeplab系列详解-CSDN博客代码地址,下载可复
- 考场/工厂违规用机难捕捉?3维度优化方案部署成本直降40%
2501_92487762
视觉检测计算机视觉算法目标检测
开篇痛点工业场景中传统玩手机识别面临三重挑战:小目标检测(手机平均像素占比<0.5%)、遮挡干扰(人手/物体遮挡率超60%)、实时性要求(需200ms内响应)。某安检企业反馈,开源YOLOv5在车间场景误报率高达34%。技术解析:双流特征融合架构陌讯算法创新性融合双路径特征(图1):#陌讯核心代码逻辑(简化版)defdual_path_fusion(backbone):shallow_path=C
- 安防监控漏报频发?陌讯实时检测算法实测召回率98%
2501_92487721
目标跟踪计算机视觉人工智能算法
一、开篇痛点:安防监控的检测难题在夜间低光、遮挡、小目标等复杂场景下,传统YOLO系列算法常出现漏检(FN)和误检(FP)。某安防厂商测试数据显示:当目标像素<50×50时,开源模型召回率骤降至65%以下。二、技术解析:陌讯算法的三重创新陌讯视觉算法通过多尺度特征融合+自适应光照补偿提升鲁棒性:动态感受野机制在Backbone中引入可变形卷积(DeformableConv),公式表示为:y(p)=
- 万字长文详解YOLOv8 yaml 文件,结合模型输出的网络结构图分析Parameters /backbone/head以及三者的数学关联
YOLO大师
YOLO论文阅读
YOLO目标检测创新改进与实战案例专栏专栏目录:YOLO有效改进系列及项目实战目录包含卷积,主干注意力,检测头等创新机制以及各种目标检测分割项目实战案例专栏链接:YOLO基础解析+创新改进+实战案例之前写过一篇YOLOv8yaml配置文件逐层的解析:结合YOLOv8源码逐层解读yaml文件的配置,本文主要从整体的角度去解析yaml。YOLOv8模型YOLOv8提供了非常多的模型,详见:https:
- 万字长文带你搞懂yolov5和yolov8以及目标检测相关面试
起个别名
C++YOLO目标检测目标跟踪
一、与yoloV4相比,yoloV5的改进输入端:在模型训练阶段,使用了Mosaic数据增强、自适应锚框计算、自适应图片缩放基准网络:使用了FOCUS结构和CSP结构Neck网络:在Backbone和最后的Head输出层之间插入FPN_PAN结构Head输出层:训练时的损失函数GIOU_Loss,预测筛选框的DIOU_nms二、yolov5网络结构预处理在模型预处理阶段,使用了Mosaic数据增强
- 《中国电信运营商骨干网:历史、现状与未来演进》系列 第一篇:中国骨干网全景图:一级运营商与专用网络的演进
老马爱知
通信网络#电信运营商网络骨干网电信运营商网络架构数字基础设施互联网科普
一、引言:骨干网——国家“信息大动脉”在当今数字经济蓬勃发展的时代,信息网络已成为国家基础设施的核心组成部分。而在这张错综复杂的信息大网中,骨干网(BackboneNetwork)扮演着“
- YOLOv11 改进策略 | GFPN:超越 BiFPN,跳层与跨尺度连接重塑特征金字塔
YOLOv11改进策略|GFPN:超越BiFPN,跳层与跨尺度连接重塑特征金字塔!介绍颈部网络(Neck)在目标检测任务中扮演着至关重要的角色,它负责有效地融合来自骨干网络(Backbone)不同层级的特征图,为检测头部(Head)提供包含丰富语义和空间信息的多尺度特征。FPN、PANet和BiFPN等结构是特征金字塔融合的代表。BiFPN作为其中的佼佼者,通过双向连接和加权融合取得了优异的性能。
- 【2024 CVPR-Backbone】RepViT: Revisiting Mobile CNN From ViT Perspective
无敌悦悦王
文献阅读cnn人工智能神经网络计算机视觉图像处理python深度学习
摘要近期,轻量级视觉Transformer(ViT)在资源受限的移动设备上表现出比轻量级卷积神经网络(CNN)更优异的性能和更低的延迟。研究人员已发现轻量级ViT与轻量级CNN之间存在许多结构关联,但二者在模块结构、宏观和微观设计上的显著架构差异尚未得到充分研究。本研究从ViT视角重新审视轻量级CNN的高效设计,并强调其在移动设备上的应用前景。具体而言,我们通过整合轻量级ViT的高效架构设计,逐步
- FB-OCC: 3D Occupancy Prediction based on Forward-BackwardView Transformation
justtoomuchforyou
智驾
NVidia,CVPR20233DOccupancyPredictionChallengeworkshoppaper:https://arxiv.org/pdf/2307.1492code:https://github.com/NVlabs/FB-BEV大参数量imagebackboneInternImage-H,1B外部数据集预训练:object365nuscenes:有点云label,强化网络
- Odoo OWL 框架深度研究(VIP10万字版)
源力祁老师
odoo开发实践学习方法开发语言前端
一、核心理念、架构定位与实践价值前言:为什么需要一份新的前端框架?在Odoo的漫长发展历程中,其前端部分长期依赖于一个基于Backbone.js的自定义Widget系统。这个系统在当时是有效的,但随着前端技术的飞速发展(以React,Vue,Svelte等框架为代表),其固有的命令式编程、手动DOM操作和复杂的继承体系等问题,逐渐成为制约开发效率和应用性能的瓶颈。为了彻底解决这些历史遗留问题,并拥
- 人像抠图学习笔记
AI算法网奇
人脸识别深度学习宝典深度学习神经网络自动驾驶
目录RobustVideoMatting实时视频抠图Modnet预测脚本人脸分割BiseNetV2MODNetu2net:MODNet方法RobustVideoMatting实时视频抠图Modnet预测脚本Modnet效果有时比RobustVideoMatting好,在衣服分割时,backbone是mobilev2gpu512*512速度22ms。importosimportsysimportar
- 目标检测neck经典算法之FPN的源码实现
ZzzZ31415926
目标检测算法人工智能图像处理计算机视觉深度学习python
┌────────────────────────────────────────────────────┐│初始化构造(__init__)│└────────────────────────────────────────────────────┘↓【1】参数保存+基础配置断言↓【2】判断使用哪些backbone层(start→end)↓【3】判断是否添加额外输出(extraconv)↓【4】构
- YOLOV8模型优化-选择性视角类别整合模块(SPCI):遥感目标检测的注意力增强模型详解
清风AI
YOLO算法魔改系列深度学习算法详解及代码复现计算机视觉算法目标跟踪人工智能计算机视觉YOLOpython目标检测深度学习
一、研究背景与挑战随着卫星和无人机技术的普及,高分辨率遥感影像为城市规划、灾害监测等领域提供了海量数据。然而,遥感目标检测面临三大难题:尺度剧变:目标尺寸从几米到几百米不等(如飞机vs油罐)密集分布:港口/机场等场景存在大量密集目标背景干扰:自然/人造景观交织导致语义混淆现有方法如YOLOv8虽在通用目标检测表现优异,但在遥感场景存在以下局限:Backbone缺乏显式的多尺度特征融合机制传统注意力
- YOLOv5 模型结构详解
要努力啊啊啊
计算机视觉YOLO目标跟踪人工智能计算机视觉深度学习
✅YOLOv5模型结构详解以下是以YOLOv5的最小版本yolov5s为例的模型结构(来自Ultralytics/yolov5官方实现):输入图像大小:640×640×3YOLOv5s的完整模型结构(来自models/yolov5s.yaml)#YOLOv5smodelbackbone:#[from,number,module,args][[-1,1,'Conv',[64,6,2,2]],#0-P
- 深度学习 backbone,neck,head网络关键组成
SLAM必须dunk
深度学习人工智能
在深度学习,尤其是计算机视觉任务中,backbone(骨干网络),neck(颈部),head(头部)是网络的关键组成部分,各自承担了不同的功能:1,总署:Backbone,译作骨干网络,主要指用于特征提取的,已在大型数据集(例如ImageNet|COCO等)上完成预训练,拥有预训练参数的卷积神经网络,例如:ResNet-50、Darknet53等;Head,译作检测头,主要用于预测目标的种类和位置
- YOLOv12改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对A2C2f进行二次创新
Limiiiing
YOLOv12改进专栏YOLOv12深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv12的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新A2C2f,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv
- YOLOv10改进策略【卷积层】| ICCV-2023 SAFM 空间自适应特征调制模块 对 C2fCIB 、PSA 进行二次创新
Limiiiing
YOLOv10改进专栏YOLO深度学习目标检测计算机视觉
一、本文介绍本文记录的是利用空间自适应特征调制模块SAFM优化YOLOv10的目标检测方法研究。SAFM通过更好地利用特征信息来实现模型性能和效率的平衡。本文通过二次创新C2fCIB、PSA,能够动态选择代表性特征,并结合局部上下文信息,提升模型的检测精度。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:
- 2015-5-10分享的PDF
qq2011705918
iOS传感器应用开发最佳实践_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1dDtSP2LNode应用程序构建使用MongoDB和Backbone_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1c04KnNMPhoneGap移动应用开发手册_PDF电子书下载带书签目录完整版http://pan.baidu.com/s/1mgssE
- YOLOv12改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv12改进专栏YOLO目标检测深度学习计算机视觉
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv12结合。专栏目录:YOLOv12改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv12改进专栏——以发表论文的角度,快速准
- YOLOv10改进策略【Neck】| 替换颈部结构为TPAMI 2025的Hyper-YOLO
Limiiiing
YOLOv10改进专栏YOLO计算机视觉目标检测深度学习
一、本文介绍Hyper-YOLO是一种创新的目标检测模型,将超图计算集成到YOLO架构中,以捕捉视觉特征之间复杂的高阶相关性,从而提升目标检测性能。本文记录如何将Hyper-YOLO模型与YOLOv10结合。专栏目录:YOLOv10改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改进专栏地址:YOLOv10改进专栏——以发表论文的角度,快速准
- 【目标检测】backbone究竟有何关键作用?
猫天意
目标检测目标检测人工智能计算机视觉CV
backbone的核心在于能为检测提供若干种感受野大小和中心步长的组合,以满足对不同尺度和类别的目标检测。
- 目标检测模型的主要组成部分
asdfg1258963
目标检测_ai目标检测人工智能计算机视觉
目标检测模型通常由以下几个主要部分组成:1.主干网络(Backbone)主干网络是目标检测模型的核心部分,负责从输入图像中提取特征。常见的主干网络包括:卷积神经网络(CNN):如ResNet、VGG、MobileNet等。它们通过多层卷积操作提取图像的多层次特征。Transformer架构:如VisionTransformer(ViT)及其变体,通过自注意力机制提取全局特征。主干网络的输出是一个特
- 【目标检测】检测网络中neck的核心作用
猫天意
目标检测人工智能计算机视觉CV基础
1.neck最主要的作用就是特征融合,融合就是将具有不同大小感受野的特征图进行了耦合,从而增强了特征图的表达能力。2.neck决定了head的数量,进而潜在决定了不同尺度样本如何分配到不同的head,这一点可以看做是将整个网络的多尺度目标学习的负担,分散到了多个层级的特征图上。3.neck将来自于backbone上的多个层级的特征图进行融合加工,增强其表达能力的同时,输出加工后并具有相同宽度的特征
- 目标检测:Deformable DETR: Deformable Transformers for End-to-End Object Detection【方法解读】
沉浸式AI
《AI与SLAM论文解析》目标检测人工智能计算机视觉深度学习算法论文解读
可以查看B站视频(讲的很详细,对照下文内容进行视频观看,效果更佳):(1)DeformableDETR|1、Abstract算法概述(2)DeformableDETR|2、backbone、MultiHeadAttention公式讲解(3)DeformableDETR|3、DeformableAttention、MSDeformAttention、流程讲解摘要DETR最近被提出以消除许多手工设计的
- RT-DETR改进策略【Backbone/主干网络】| ICLR-2023 替换骨干网络为:RevCol 一种新型神经网络设计范式
Limiiiing
RT-DETR改进专栏深度学习目标检测RT-DETR计算机视觉
一、本文介绍本文记录的是基于RevCol的RT-DETR目标检测改进方法研究。RevCol是一种新型神经网络设计范式,它由多个子网(列)及多级可逆连接构成,正向传播时特征逐渐解缠结且保持信息。可逆变换借鉴可逆神经网络思想,设计多级可逆单元用于解决模型对特征图形状的限制以及与信息瓶颈原则的冲突。本文将其应用到RT-DETR中,并配置了原论文中的revcol_tiny、revcol_small、rev
- YOLOv9改进策略【注意力机制篇】| CVPR2024 CAA上下文锚点注意力机制
Limiiiing
YOLOv9改进专栏计算机视觉深度学习YOLO目标检测
一、本文介绍本文记录的是基于CAA注意力模块的YOLOv9目标检测改进方法研究。在远程遥感图像或其他大尺度变化的图像中目标检测任务中,为准确提取其长距离上下文信息,需要解决大目标尺度变化和多样上下文信息时的不足的问题。CAA能够有效捕捉长距离依赖,并且参数量和计算量更少。专栏目录:YOLOv9改进目录一览|涉及卷积层、轻量化、注意力、损失函数、Backbone、SPPF、Neck、检测头等全方位改
- 2、YOLOv12架构解析:速度与精度的艺术
进取星辰
YOLO
前言:拆解YOLO的"超级大脑"还记得我们上篇文章用5行代码实现的物品检测吗?今天我要带你走进YOLOv12的"大脑",看看这个闪电侠是如何思考的!想象一下:当你走进一家咖啡馆时,你的大脑会:快速扫描整个场景(Backbone)注意到重要区域:柜台、座位区(Neck)精确识别:拿铁咖啡、巧克力蛋糕(Head)YOLOv12的工作方式惊人地相似!下面我们就来拆解这套视觉感知系统:1.整体架构:从三明
- 探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元
郑微殉
探秘BERT与VITS2的完美融合:Bert-VITS2,跨语言语音合成新纪元Bert-VITS2vits2backbonewithmultilingual-bert项目地址:https://gitcode.com/gh_mirrors/be/Bert-VITS2一、项目介绍Bert-VITS2,如其名,是一个融合了多语言预训练模型——BERT与新一代文本到语音(Text-to-Speech,TT
- 基于RT-DETR的YOLOv8目标检测框架优化及其应用前景
向哆哆
YOLO创新涨点系列YOLO目标检测人工智能yolov8
文章目录什么是RT-DETR?一、YOLOv8与RT-DETR检测头的结合YOLOv8架构概述代码实例:YOLOv8与RT-DETR检测头的集成1.引入必要的库2.YOLOv8Backbone(特征提取)3.RT-DETR检测头4.集成YOLOv8Backbone与RT-DETR头5.模型训练与评估二、YOLOv8与RT-DETR检测头的结合:进一步的优化与调优1.数据增强与多尺度训练数据增强技术
- java工厂模式
3213213333332132
java抽象工厂
工厂模式有
1、工厂方法
2、抽象工厂方法。
下面我的实现是抽象工厂方法,
给所有具体的产品类定一个通用的接口。
package 工厂模式;
/**
* 航天飞行接口
*
* @Description
* @author FuJianyong
* 2015-7-14下午02:42:05
*/
public interface SpaceF
- nginx频率限制+python测试
ronin47
nginx 频率 python
部分内容参考:http://www.abc3210.com/2013/web_04/82.shtml
首先说一下遇到这个问题是因为网站被攻击,阿里云报警,想到要限制一下访问频率,而不是限制ip(限制ip的方案稍后给出)。nginx连接资源被吃空返回状态码是502,添加本方案限制后返回599,与正常状态码区别开。步骤如下:
- java线程和线程池的使用
dyy_gusi
ThreadPoolthreadRunnabletimer
java线程和线程池
一、创建多线程的方式
java多线程很常见,如何使用多线程,如何创建线程,java中有两种方式,第一种是让自己的类实现Runnable接口,第二种是让自己的类继承Thread类。其实Thread类自己也是实现了Runnable接口。具体使用实例如下:
1、通过实现Runnable接口方式 1 2
- Linux
171815164
linux
ubuntu kernel
http://kernel.ubuntu.com/~kernel-ppa/mainline/v4.1.2-unstable/
安卓sdk代理
mirrors.neusoft.edu.cn 80
输入法和jdk
sudo apt-get install fcitx
su
- Tomcat JDBC Connection Pool
g21121
Connection
Tomcat7 抛弃了以往的DBCP 采用了新的Tomcat Jdbc Pool 作为数据库连接组件,事实上DBCP已经被Hibernate 所抛弃,因为他存在很多问题,诸如:更新缓慢,bug较多,编译问题,代码复杂等等。
Tomcat Jdbc P
- 敲代码的一点想法
永夜-极光
java随笔感想
入门学习java编程已经半年了,一路敲代码下来,现在也才1w+行代码量,也就菜鸟水准吧,但是在整个学习过程中,我一直在想,为什么很多培训老师,网上的文章都是要我们背一些代码?比如学习Arraylist的时候,教师就让我们先参考源代码写一遍,然
- jvm指令集
程序员是怎么炼成的
jvm 指令集
转自:http://blog.csdn.net/hudashi/article/details/7062675#comments
将值推送至栈顶时 const ldc push load指令
const系列
该系列命令主要负责把简单的数值类型送到栈顶。(从常量池或者局部变量push到栈顶时均使用)
0x02 &nbs
- Oracle字符集的查看查询和Oracle字符集的设置修改
aijuans
oracle
本文主要讨论以下几个部分:如何查看查询oracle字符集、 修改设置字符集以及常见的oracle utf8字符集和oracle exp 字符集问题。
一、什么是Oracle字符集
Oracle字符集是一个字节数据的解释的符号集合,有大小之分,有相互的包容关系。ORACLE 支持国家语言的体系结构允许你使用本地化语言来存储,处理,检索数据。它使数据库工具,错误消息,排序次序,日期,时间,货
- png在Ie6下透明度处理方法
antonyup_2006
css浏览器FirebugIE
由于之前到深圳现场支撑上线,当时为了解决个控件下载,我机器上的IE8老报个错,不得以把ie8卸载掉,换个Ie6,问题解决了,今天出差回来,用ie6登入另一个正在开发的系统,遇到了Png图片的问题,当然升级到ie8(ie8自带的开发人员工具调试前端页面JS之类的还是比较方便的,和FireBug一样,呵呵),这个问题就解决了,但稍微做了下这个问题的处理。
我们知道PNG是图像文件存储格式,查询资
- 表查询常用命令高级查询方法(二)
百合不是茶
oracle分页查询分组查询联合查询
----------------------------------------------------分组查询 group by having --平均工资和最高工资 select avg(sal)平均工资,max(sal) from emp ; --每个部门的平均工资和最高工资
- uploadify3.1版本参数使用详解
bijian1013
JavaScriptuploadify3.1
使用:
绑定的界面元素<input id='gallery'type='file'/>$("#gallery").uploadify({设置参数,参数如下});
设置的属性:
id: jQuery(this).attr('id'),//绑定的input的ID
langFile: 'http://ww
- 精通Oracle10编程SQL(17)使用ORACLE系统包
bijian1013
oracle数据库plsql
/*
*使用ORACLE系统包
*/
--1.DBMS_OUTPUT
--ENABLE:用于激活过程PUT,PUT_LINE,NEW_LINE,GET_LINE和GET_LINES的调用
--语法:DBMS_OUTPUT.enable(buffer_size in integer default 20000);
--DISABLE:用于禁止对过程PUT,PUT_LINE,NEW
- 【JVM一】JVM垃圾回收日志
bit1129
垃圾回收
将JVM垃圾回收的日志记录下来,对于分析垃圾回收的运行状态,进而调整内存分配(年轻代,老年代,永久代的内存分配)等是很有意义的。JVM与垃圾回收日志相关的参数包括:
-XX:+PrintGC
-XX:+PrintGCDetails
-XX:+PrintGCTimeStamps
-XX:+PrintGCDateStamps
-Xloggc
-XX:+PrintGC
通
- Toast使用
白糖_
toast
Android中的Toast是一种简易的消息提示框,toast提示框不能被用户点击,toast会根据用户设置的显示时间后自动消失。
创建Toast
两个方法创建Toast
makeText(Context context, int resId, int duration)
参数:context是toast显示在
- angular.identity
boyitech
AngularJSAngularJS API
angular.identiy 描述: 返回它第一参数的函数. 此函数多用于函数是编程. 使用方法: angular.identity(value); 参数详解: Param Type Details value
*
to be returned. 返回值: 传入的value 实例代码:
<!DOCTYPE HTML>
- java-两整数相除,求循环节
bylijinnan
java
import java.util.ArrayList;
import java.util.List;
public class CircleDigitsInDivision {
/**
* 题目:求循环节,若整除则返回NULL,否则返回char*指向循环节。先写思路。函数原型:char*get_circle_digits(unsigned k,unsigned j)
- Java 日期 周 年
Chen.H
javaC++cC#
/**
* java日期操作(月末、周末等的日期操作)
*
* @author
*
*/
public class DateUtil {
/** */
/**
* 取得某天相加(减)後的那一天
*
* @param date
* @param num
*
- [高考与专业]欢迎广大高中毕业生加入自动控制与计算机应用专业
comsci
计算机
不知道现在的高校还设置这个宽口径专业没有,自动控制与计算机应用专业,我就是这个专业毕业的,这个专业的课程非常多,既要学习自动控制方面的课程,也要学习计算机专业的课程,对数学也要求比较高.....如果有这个专业,欢迎大家报考...毕业出来之后,就业的途径非常广.....
以后
- 分层查询(Hierarchical Queries)
daizj
oracle递归查询层次查询
Hierarchical Queries
If a table contains hierarchical data, then you can select rows in a hierarchical order using the hierarchical query clause:
hierarchical_query_clause::=
start with condi
- 数据迁移
daysinsun
数据迁移
最近公司在重构一个医疗系统,原来的系统是两个.Net系统,现需要重构到java中。数据库分别为SQL Server和Mysql,现需要将数据库统一为Hana数据库,发现了几个问题,但最后通过努力都解决了。
1、原本通过Hana的数据迁移工具把数据是可以迁移过去的,在MySQl里面的字段为TEXT类型的到Hana里面就存储不了了,最后不得不更改为clob。
2、在数据插入的时候有些字段特别长
- C语言学习二进制的表示示例
dcj3sjt126com
cbasic
进制的表示示例
# include <stdio.h>
int main(void)
{
int i = 0x32C;
printf("i = %d\n", i);
/*
printf的用法
%d表示以十进制输出
%x或%X表示以十六进制的输出
%o表示以八进制输出
*/
return 0;
}
- NsTimer 和 UITableViewCell 之间的控制
dcj3sjt126com
ios
情况是这样的:
一个UITableView, 每个Cell的内容是我自定义的 viewA viewA上面有很多的动画, 我需要添加NSTimer来做动画, 由于TableView的复用机制, 我添加的动画会不断开启, 没有停止, 动画会执行越来越多.
解决办法:
在配置cell的时候开始动画, 然后在cell结束显示的时候停止动画
查找cell结束显示的代理
- MySql中case when then 的使用
fanxiaolong
casewhenthenend
select "主键", "项目编号", "项目名称","项目创建时间", "项目状态","部门名称","创建人"
union
(select
pp.id as "主键",
pp.project_number as &
- Ehcache(01)——简介、基本操作
234390216
cacheehcache简介CacheManagercrud
Ehcache简介
目录
1 CacheManager
1.1 构造方法构建
1.2 静态方法构建
2 Cache
2.1&
- 最容易懂的javascript闭包学习入门
jackyrong
JavaScript
http://www.ruanyifeng.com/blog/2009/08/learning_javascript_closures.html
闭包(closure)是Javascript语言的一个难点,也是它的特色,很多高级应用都要依靠闭包实现。
下面就是我的学习笔记,对于Javascript初学者应该是很有用的。
一、变量的作用域
要理解闭包,首先必须理解Javascript特殊
- 提升网站转化率的四步优化方案
php教程分享
数据结构PHP数据挖掘Google活动
网站开发完成后,我们在进行网站优化最关键的问题就是如何提高整体的转化率,这也是营销策略里最最重要的方面之一,并且也是网站综合运营实例的结果。文中分享了四大优化策略:调查、研究、优化、评估,这四大策略可以很好地帮助用户设计出高效的优化方案。
PHP开发的网站优化一个网站最关键和棘手的是,如何提高整体的转化率,这是任何营销策略里最重要的方面之一,而提升网站转化率是网站综合运营实力的结果。今天,我就分
- web开发里什么是HTML5的WebSocket?
naruto1990
Webhtml5浏览器socket
当前火起来的HTML5语言里面,很多学者们都还没有完全了解这语言的效果情况,我最喜欢的Web开发技术就是正迅速变得流行的 WebSocket API。WebSocket 提供了一个受欢迎的技术,以替代我们过去几年一直在用的Ajax技术。这个新的API提供了一个方法,从客户端使用简单的语法有效地推动消息到服务器。让我们看一看6个HTML5教程介绍里 的 WebSocket API:它可用于客户端、服
- Socket初步编程——简单实现群聊
Everyday都不同
socket网络编程初步认识
初次接触到socket网络编程,也参考了网络上众前辈的文章。尝试自己也写了一下,记录下过程吧:
服务端:(接收客户端消息并把它们打印出来)
public class SocketServer {
private List<Socket> socketList = new ArrayList<Socket>();
public s
- 面试:Hashtable与HashMap的区别(结合线程)
toknowme
昨天去了某钱公司面试,面试过程中被问道
Hashtable与HashMap的区别?当时就是回答了一点,Hashtable是线程安全的,HashMap是线程不安全的,说白了,就是Hashtable是的同步的,HashMap不是同步的,需要额外的处理一下。
今天就动手写了一个例子,直接看代码吧
package com.learn.lesson001;
import java
- MVC设计模式的总结
xp9802
设计模式mvc框架IOC
随着Web应用的商业逻辑包含逐渐复杂的公式分析计算、决策支持等,使客户机越
来越不堪重负,因此将系统的商业分离出来。单独形成一部分,这样三层结构产生了。
其中‘层’是逻辑上的划分。
三层体系结构是将整个系统划分为如图2.1所示的结构[3]
(1)表现层(Presentation layer):包含表示代码、用户交互GUI、数据验证。
该层用于向客户端用户提供GUI交互,它允许用户