Problem Description
Haoren is very good at solving mathematic problems. Today he is working a problem like this:
Find three positive integers X, Y and Z (X < Y, Z > 1) that holds
X^Z + Y^Z + XYZ = K
where K is another given integer.
Here the operator “^” means power, e.g., 2^3 = 2 * 2 * 2.
Finding a solution is quite easy to Haoren. Now he wants to challenge more: What’s the total number of different solutions?
Surprisingly, he is unable to solve this one. It seems that it’s really a very hard mathematic problem.
Now, it’s your turn.
Input
There are multiple test cases.
For each case, there is only one integer K (0 < K < 2^31) in a line.
K = 0 implies the end of input.
Output
Output the total number of solutions in a line for each test case.
Sample Input
Sample Output
1
1
0
思路:枚举y和次数z然后二分查找是否有符合条件的x出现y*y<2^31.
z增加值将是指数上涨所以时间复杂度为,log(k)*log(k)*sqrt(k)
#include<stdio.h>
typedef long long ll;
int cal(ll y,ll z,ll k)
{
ll sum,l=1,flag=y-1;
while(l<=flag)
{ ll x=(l+flag)/2,xz=1;
for(int i=1;i<=z;i++)
xz*=x;
sum=xz+x*y*z;
if(sum>k) flag=x-1;
else if(sum==k) return 1;
else l=x+1;
}
return 0;
}
int main()
{
ll x,y,z;
//freopen("e://in.txt","r",stdin);
int icase,ans;
while(scanf("%d",&icase)==1&&icase)
{
ans=0;y=2;z=2;
for(y=2;y*y<=icase;y++)
for(z=2;;z++)
{
ll yz=1;
for(int i=1;i<=z;i++)
yz*=y;
if(yz>icase)
break;
else
if(cal(y,z,icase-yz))
ans++;
}
printf("%d\n",ans);
}
return 0;
}