- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- 不忘初心 方得始终 ——浅谈家族文化传承的重要性(1179字)
fcb12615e0bc
近期一项网站调查显示,一半以上的网民不知道自己姓氏的由来,起名不按照辈分,家族没有家训,这引起了网上关于家族文化传承的热议。(联系材料)我认为,“家”是“国”的重要组成部分,家族文化也是中华民族优秀传统文化的重要组成部分。(建立联系)不忘初心,方得始终,传承家族文化,意味着传承中华民族优秀传统文化;意味着延续中华民族旺盛的生命力和强大的战斗力;意味着发展与时俱进,开拓进取的创新文化。(引出三个分论
- Prompt Engineering(提示词工程)基础了解
Fuly1024
LLMprompt
参考:https://blog.csdn.net/qq_56438555/article/details/1448865171.基础概念:提示词工程(promptEngineering)是指通过设计、优化输入给大语言模型的文本指令(即“提示词”),引导LLM输出我们期望的结果。让大模型在无需微调(Fine-tuning)的情况下,通过“更好的提问方式”完成复杂任务(开发潜力,不会的还是不会)。但是
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 【美团3面】大模型面试题详解:大模型使用几十条数据微调后为啥性能差的很多?
AI大模型-王哥
产品经理大模型学习AI大模型人工智能大模型大模型教程程序员
一个很有意思的回答:大模型的LossLandscape是由多个“Basin”(盆地)组成的,而不是一个平滑的曲面。如果微调(Fine-Tuning)的优化方向偏离了BasicCapacityBasin,就可能容易训崩掉,虽然训崩的概率不大。大模型(如LLM)在预训练阶段通过海量数据学习,优化出一个“基本能力盆地”(BasicCapacityBasin),这个Basin代表模型具备通用语言理解、生成
- HDU 4628 Pieces (状压DP+记忆化搜索)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4628#includeusingnamespacestd;#definedebugputs("YES");#definerep(x,y,z)for(int(x)=(y);(x)>=1,x=x*x%mod)if(y&1)t=t*x%mod;returnt;}llgcd(llx,lly){returny?g
- HDU-最大共倍数(2028)
—Luz—
C语言HDUHDU-最大公倍数
ProblemDescription求n个数的最小公倍数。Input输入包含多个测试实例,每个测试实例的开始是一个正整数n,然后是n个正整数。Output为每组测试数据输出它们的最小公倍数,每个测试实例的输出占一行。你可以假设最后的输出是一个32位的整数。SampleInput2463257SampleOutput1270//代码有所参考#define_CRT_SECURE_NO_WARNINGS
- bert中最大处理序列长度超过512的处理策略
lbertj
NLPbert自然语言处理python
导读:由于bert文本长度最大为512,因此当文本超过512时,需要改进bert。本文就此改进进行阐述。针对长度超过512的文本,可以应用如下转换策略(预留[CLS]和[SEP]):(1)head-only:前510tokens(2)tail-only:后510tokens;(3)head+tail:根据经验选择前128和382tokens(4)分段:首先将输入文本(长度为L)分成k=L/510个
- yolov8涨点系列之C2f模块改进主分支
没脾气的小玩家
YOLO目标检测
文章目录C2F模块介绍定义与基本原理应用场景C2f模块修改步骤(1)C2f_up模块编辑(2)在__init_.py+block.py中声明(3)在task.py中声明yolov8引入C2f_up模块yolov8.yamlyolov8.yaml引入C2f_up模块C2f改进对YOLOv8检测具有多方面的好处C2F模块介绍定义与基本原理 C2F(Coarse-to-Fine)模块通常是一
- 亲子日记(382)2019 12 12 阴 周六
李易诺妈妈
每个周六都是易诺写作业的日子,这个点了,把老师布置的作业都写完了。把剩下的时间交给她自己吧,自己看着安排着玩吧,明天就开始复习,准备迎接考试!2018级六班李易诺妈妈
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- 孕期日记 放假了
天边的星
孕20周6天,今日宝宝,274mm,382g。宝宝的性别区别开始慢慢形成了,不知道是男宝宝还是女宝宝,不管男宝宝还是女宝宝,只要健康就好,这是我唯一的希望。今天老公放假了,我们回万州了。早上起来之后,我喝了有大约三百多毫升的牛奶,然后出门去散步。我们沿着街道,一直走,打算去吃凉面。每次回来,我们都想着去高中学校门口吃凉面,但是,曾经的凉面店其实早已经被其他店取代了,我们每次都没有在校门口吃到凉面,
- 算法竞赛备考冲刺必刷题(C++) | 洛谷 P1179 数字统计
本文分享的必刷题目是从蓝桥云课、洛谷、AcWing等知名刷题平台精心挑选而来,并结合各平台提供的算法标签和难度等级进行了系统分类。题目涵盖了从基础到进阶的多种算法和数据结构,旨在为不同阶段的编程学习者提供一条清晰、平稳的学习提升路径。欢迎大家订阅我的专栏:算法题解:C++与Python实现!附上汇总贴:算法竞赛备考冲刺必刷题(C++)|汇总【题目来源】洛谷:P1179[NOIP2010普及组]数字
- 【Kafka】Failed to send data to Kafka: Expiring 30 record(s) for xxx 732453 ms has passed since last
九师兄
kafkabigdatazookeeper
文章目录1.美图2.背景2.尝试方案13.尝试解决24.场景再现25.场景46.场景57.场景78.场景8M.拓展本文为博主九师兄(QQ:541711153欢迎来探讨技术)原创文章,未经允许博主不允许转载。1.美图问题与【Flink】Flink写入kafka报错FailedtosenddatatoKafka:Expiring4record(s)for20001mshaspassed重复了。2.背景
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- HDU杭电OJ基础100题2010-2019(C语言版)
雁于飞
算法专栏c语言开发语言
文章目录@[TOC](文章目录)[原题出处](https://acm.hdu.edu.cn/listproblem.php?vol=11)前言p2010.水仙花数问题描述解题思路代码核心思想:p2011多项式求和问题描述代码p2003求绝对值问题描述解题思路代码扩展p2004成绩转换问题描述解题思路代码重点p2005第几天问题描述解题思路代码扩展p2006求奇数的乘积p2007平方和与立方和问题描
- uptime命令详解
半桶水专家
运维linux网络
uptime是Linux/Unix系统中的一个非常常用的命令,用于显示系统的运行时间、当前时间、登录用户数以及系统负载(loadaverage)。下面是对uptime命令的详细解释。一、基本语法uptime[参数]常用参数:参数说明无显示当前时间、系统运行时间、用户数、平均负载-p只显示系统已运行的时间(pretty格式)-s显示系统最近的启动时间(since)-h显示帮助信息二、命令输出详解示例
- D-FINE使用pth权重批量推理可视化图片
悠悠海风
代码调试深度学习人工智能python目标检测计算机视觉
关于D-FINE相关的内容可参考下面这篇博客:论文解读:ICLR2025|D-FINE_d-fine:redefineregressiontaskindetrsasfine--CSDN博客文章浏览阅读949次,点赞18次,收藏28次。D-FINE是一款功能强大的实时物体检测器,它将DETRs中的边界框回归任务重新定义为细粒度分布细化(FDR),并引入了全局最优定位自蒸馏(GO-LSD),在不引入额
- 【机器学习&深度学习】模型微调的基本概念与流程
一叶千舟
深度学习【理论】机器学习深度学习人工智能
目录前言一、什么是模型微调(Fine-tuning)?二、预训练vs微调:什么关系?三、微调的基本流程(以BERT为例)1️⃣准备数据2️⃣加载预训练模型和分词器3️⃣数据编码与加载4️⃣定义优化器5️⃣开始训练6️⃣评估与保存模型四、是否要冻结BERT层?五、完整训练示例代码5.1环境依赖5.2执行代码总结:微调的优势前言在自然语言处理(NLP)快速发展的今天,预训练模型如BERT成为了众多任务
- D-FINE模型详解及代码复现
清风AI
目标跟踪人工智能计算机视觉深度学习机器学习python神经网络
研究背景在实时目标检测领域的快速发展背景下,D-FINE作为一项突破性的方法应运而生。它超越了现有模型如YOLOv10、YOLO11及RT-DETRv1/v2/v3,重新定义了边界框回归任务,显著提升了实时目标检测的性能上限。D-FINE通过创新的细粒度分布优化(FDR)和全局最优定位自蒸馏(GO-LSD)机制,为目标检测领域带来了新的突破,为未来的研究奠定了基础。创新优势D-FINE模型在创新方
- 解密大模型全栈开发:从搭建环境到实战案例,一站式攻略
海棠AI实验室
“智元启示录“-AI发展的深度思考与未来展望人工智能大模型全栈开发
目录大模型基础概念什么是大模型?大模型的发展历程大模型的类型大模型全栈开发环境搭建硬件需求软件环境配置云服务选择大模型应用开发流程模型选择策略提示工程(PromptEngineering)模型微调(Fine-tuning)参数高效微调(PEFT)大模型应用架构设计基本应用架构RAG(检索增强生成)系统Agent系统设计大模型应用部署与优化模型部署选项模型优化技术性能监控与调优大模型应用实战案例智能
- 重温经典第二弹(xdoj1175,xdoj1179)
Owen_Q
搜索暴力枚举字符串
一转眼,记忆又来到了暑假。或许,这是一个这算是自己真正开始接触了解acm的一个时间点吧,各种算法数据结构,开始慢慢浮出水面。回顾当初,感慨万千。又找出了两道未ac之题,确实复杂度明显加强,思维性的进一步考验。Count思路:子串搜索问题,因为n和k大到2e5,因此,肯定是个单向处理不能回溯的问题,否则最坏n方的复杂度是难以接受的。对于单次搜索,考虑可以维护现有区间的元素,然后移位遍历向后搜索,对于
- 【人工智能】微调的秘密武器:释放大模型的无限潜能
蒙娜丽宁
Python杂谈人工智能人工智能
《PythonOpenCV从菜鸟到高手》带你进入图像处理与计算机视觉的大门!解锁Python编程的无限可能:《奇妙的Python》带你漫游代码世界在人工智能迅猛发展的今天,大规模语言模型(LLMs)以其强大的通用能力席卷各行各业。然而,如何让这些通用模型在特定领域或任务中发挥最大潜力?答案是微调(Fine-tuning)。本文深入探讨微调的理论基础、技术细节与实践方法,揭示其作为解锁大模型隐藏潜力
- 前缀和与后缀和(HDU6186)
MatrixYg
HDU水题
题目链接。题目的大意是:给一个数组,和一个数组的下标·,然后在数组中去掉这个下标对应的元素,把剩下的元素全部做&/|/^这三种位运算,输出位运算之后的结果。数据范围1e5.当然暴力是不可行的。首先需要知道的是:一个数&自己不变,|自己也是不变,^自己是0。这样我们对于每一种运算维护两个数组,一个前缀数组,一个后缀数组。这样两个结合起来可以达到去除任意一个中间元素的效果。//我们只证明一种情况,其他
- 【面试宝典】【大模型入门】【模型微调】
曾小文
人工智能深度学习机器学习
面试热点科普:监督微调vs无监督微调,有啥不一样?在大模型时代(比如BERT、GPT)里,我们经常听到“预训练+微调”的范式。但你可能会疑惑——监督微调、无监督微调,到底有啥区别?用的场景一样吗?今天这篇,带你5分钟搞懂这对“孪生兄弟”的异同✅1.术语定义名称定义说明预训练(Pretraining)在大规模通用数据上训练模型,学习“通用知识”,比如语言规律、语义表示。微调(Fine-tuning)
- 中文工单分类模型选择
SugarPPig
人工智能分类人工智能数据挖掘
采用基于预训练模型的微调(Fine-tuning)方案来做中文工单分类,这是非常明智的选择,因为预训练模型已经在大量中文语料上学习了丰富的语言知识,能大幅提升分类效果。在HuggingFace上,针对中文文本分类,我为你推荐以下最合适的模型:最推荐的模型:BERT-base-chinese模型名称(HuggingFaceID):google-bert/bert-base-chinese为什么推荐它
- LLM模型的一些思考
巴基海贼王
nlp
对通用LLM模型进行Fine-tuning操作(SFT,supervisedfinetuning),带来的影响往往是有害的?从表象看,使用领域数据对LLM做Fine-tuning,通常会造成灾难性的“灾难遗忘”问题。简单点儿说,SFT在赋予对领域知识理解能力的同时,由于修正模型参数,导致模型遗忘之前学会的某些知识。目前的“智能=压缩”的理论是否正确?LLM的压缩能力是否可以拆解成单个神经元的“压缩
- EtherCAT转EtherNet/IP网关CEI-382
sibo_yzm
tcp/ip网络linux
CEI-382是一款实现EtherCAT从站设备与EtherNet/IP主站设备之间数据交换的通信网关,可以轻松实现伺服驱动器、变频器等采用EtherCAT协议的设备与罗克韦尔(Rockwell)、欧姆龙等品牌PLC主站系统之间的安全连接与高效通信产品特点:1、三以太网接口:2+1布局,EtherNet/IP端配备双口,内置交换功能,便于级联扩展;2、支持DLR冗余:EtherNet/IP端支持N
- 多线程编程之卫生间
周凡杨
java并发卫生间线程厕所
如大家所知,火车上车厢的卫生间很小,每次只能容纳一个人,一个车厢只有一个卫生间,这个卫生间会被多个人同时使用,在实际使用时,当一个人进入卫生间时则会把卫生间锁上,等出来时打开门,下一个人进去把门锁上,如果有一个人在卫生间内部则别人的人发现门是锁的则只能在外面等待。问题分析:首先问题中有两个实体,一个是人,一个是厕所,所以设计程序时就可以设计两个类。人是多数的,厕所只有一个(暂且模拟的是一个车厢)。
- How to Install GUI to Centos Minimal
sunjing
linuxInstallDesktopGUI
http://www.namhuy.net/475/how-to-install-gui-to-centos-minimal.html
I have centos 6.3 minimal running as web server. I’m looking to install gui to my server to vnc to my server. You can insta
- Shell 函数
daizj
shell函数
Shell 函数
linux shell 可以用户定义函数,然后在shell脚本中可以随便调用。
shell中函数的定义格式如下:
[function] funname [()]{
action;
[return int;]
}
说明:
1、可以带function fun() 定义,也可以直接fun() 定义,不带任何参数。
2、参数返回
- Linux服务器新手操作之一
周凡杨
Linux 简单 操作
1.whoami
当一个用户登录Linux系统之后,也许他想知道自己是发哪个用户登录的。
此时可以使用whoami命令。
[ecuser@HA5-DZ05 ~]$ whoami
e
- 浅谈Socket通信(一)
朱辉辉33
socket
在java中ServerSocket用于服务器端,用来监听端口。通过服务器监听,客户端发送请求,双方建立链接后才能通信。当服务器和客户端建立链接后,两边都会产生一个Socket实例,我们可以通过操作Socket来建立通信。
首先我建立一个ServerSocket对象。当然要导入java.net.ServerSocket包
ServerSock
- 关于框架的简单认识
西蜀石兰
框架
入职两个月多,依然是一个不会写代码的小白,每天的工作就是看代码,写wiki。
前端接触CSS、HTML、JS等语言,一直在用的CS模型,自然免不了数据库的链接及使用,真心涉及框架,项目中用到的BootStrap算一个吧,哦,JQuery只能算半个框架吧,我更觉得它是另外一种语言。
后台一直是纯Java代码,涉及的框架是Quzrtz和log4j。
都说学前端的要知道三大框架,目前node.
- You have an error in your SQL syntax; check the manual that corresponds to your
林鹤霄
You have an error in your SQL syntax; check the manual that corresponds to your MySQL server version for the right syntax to use near 'option,changed_ids ) values('0ac91f167f754c8cbac00e9e3dc372
- MySQL5.6的my.ini配置
aigo
mysql
注意:以下配置的服务器硬件是:8核16G内存
[client]
port=3306
[mysql]
default-character-set=utf8
[mysqld]
port=3306
basedir=D:/mysql-5.6.21-win
- mysql 全文模糊查找 便捷解决方案
alxw4616
mysql
mysql 全文模糊查找 便捷解决方案
2013/6/14 by 半仙
[email protected]
目的: 项目需求实现模糊查找.
原则: 查询不能超过 1秒.
问题: 目标表中有超过1千万条记录. 使用like '%str%' 进行模糊查询无法达到性能需求.
解决方案: 使用mysql全文索引.
1.全文索引 : MySQL支持全文索引和搜索功能。MySQL中的全文索
- 自定义数据结构 链表(单项 ,双向,环形)
百合不是茶
单项链表双向链表
链表与动态数组的实现方式差不多, 数组适合快速删除某个元素 链表则可以快速的保存数组并且可以是不连续的
单项链表;数据从第一个指向最后一个
实现代码:
//定义动态链表
clas
- threadLocal实例
bijian1013
javathreadjava多线程threadLocal
实例1:
package com.bijian.thread;
public class MyThread extends Thread {
private static ThreadLocal tl = new ThreadLocal() {
protected synchronized Object initialValue() {
return new Inte
- activemq安全设置—设置admin的用户名和密码
bijian1013
javaactivemq
ActiveMQ使用的是jetty服务器, 打开conf/jetty.xml文件,找到
<bean id="adminSecurityConstraint" class="org.eclipse.jetty.util.security.Constraint">
<p
- 【Java范型一】Java范型详解之范型集合和自定义范型类
bit1129
java
本文详细介绍Java的范型,写一篇关于范型的博客原因有两个,前几天要写个范型方法(返回值根据传入的类型而定),竟然想了半天,最后还是从网上找了个范型方法的写法;再者,前一段时间在看Gson, Gson这个JSON包的精华就在于对范型的优雅简单的处理,看它的源代码就比较迷糊,只其然不知其所以然。所以,还是花点时间系统的整理总结下范型吧。
范型内容
范型集合类
范型类
- 【HBase十二】HFile存储的是一个列族的数据
bit1129
hbase
在HBase中,每个HFile存储的是一个表中一个列族的数据,也就是说,当一个表中有多个列簇时,针对每个列簇插入数据,最后产生的数据是多个HFile,每个对应一个列族,通过如下操作验证
1. 建立一个有两个列族的表
create 'members','colfam1','colfam2'
2. 在members表中的colfam1中插入50*5
- Nginx 官方一个配置实例
ronin47
nginx 配置实例
user www www;
worker_processes 5;
error_log logs/error.log;
pid logs/nginx.pid;
worker_rlimit_nofile 8192;
events {
worker_connections 4096;}
http {
include conf/mim
- java-15.输入一颗二元查找树,将该树转换为它的镜像, 即在转换后的二元查找树中,左子树的结点都大于右子树的结点。 用递归和循环
bylijinnan
java
//use recursion
public static void mirrorHelp1(Node node){
if(node==null)return;
swapChild(node);
mirrorHelp1(node.getLeft());
mirrorHelp1(node.getRight());
}
//use no recursion bu
- 返回null还是empty
bylijinnan
javaapachespring编程
第一个问题,函数是应当返回null还是长度为0的数组(或集合)?
第二个问题,函数输入参数不当时,是异常还是返回null?
先看第一个问题
有两个约定我觉得应当遵守:
1.返回零长度的数组或集合而不是null(详见《Effective Java》)
理由就是,如果返回empty,就可以少了很多not-null判断:
List<Person> list
- [科技与项目]工作流厂商的战略机遇期
comsci
工作流
在新的战略平衡形成之前,这里有一个短暂的战略机遇期,只有大概最短6年,最长14年的时间,这段时间就好像我们森林里面的小动物,在秋天中,必须抓紧一切时间存储坚果一样,否则无法熬过漫长的冬季。。。。
在微软,甲骨文,谷歌,IBM,SONY
- 过度设计-举例
cuityang
过度设计
过度设计,需要更多设计时间和测试成本,如无必要,还是尽量简洁一些好。
未来的事情,比如 访问量,比如数据库的容量,比如是否需要改成分布式 都是无法预料的
再举一个例子,对闰年的判断逻辑:
1、 if($Year%4==0) return True; else return Fasle;
2、if ( ($Year%4==0 &am
- java进阶,《Java性能优化权威指南》试读
darkblue086
java性能优化
记得当年随意读了微软出版社的.NET 2.0应用程序调试,才发现调试器如此强大,应用程序开发调试其实真的简单了很多,不仅仅是因为里面介绍了很多调试器工具的使用,更是因为里面寻找问题并重现问题的思想让我震撼,时隔多年,Java已经如日中天,成为许多大型企业应用的首选,而今天,这本《Java性能优化权威指南》让我再次找到了这种感觉,从不经意的开发过程让我刮目相看,原来性能调优不是简单地看看热点在哪里,
- 网络学习笔记初识OSI七层模型与TCP协议
dcj3sjt126com
学习笔记
协议:在计算机网络中通信各方面所达成的、共同遵守和执行的一系列约定 计算机网络的体系结构:计算机网络的层次结构和各层协议的集合。 两类服务: 面向连接的服务通信双方在通信之前先建立某种状态,并在通信过程中维持这种状态的变化,同时为服务对象预先分配一定的资源。这种服务叫做面向连接的服务。 面向无连接的服务通信双方在通信前后不建立和维持状态,不为服务对象
- mac中用命令行运行mysql
dcj3sjt126com
mysqllinuxmac
参考这篇博客:http://www.cnblogs.com/macro-cheng/archive/2011/10/25/mysql-001.html 感觉workbench不好用(有点先入为主了)。
1,安装mysql
在mysql的官方网站下载 mysql 5.5.23 http://www.mysql.com/downloads/mysql/,根据我的机器的配置情况选择了64
- MongDB查询(1)——基本查询[五]
eksliang
mongodbmongodb 查询mongodb find
MongDB查询
转载请出自出处:http://eksliang.iteye.com/blog/2174452 一、find简介
MongoDB中使用find来进行查询。
API:如下
function ( query , fields , limit , skip, batchSize, options ){.....}
参数含义:
query:查询参数
fie
- base64,加密解密 经融加密,对接
y806839048
经融加密对接
String data0 = new String(Base64.encode(bo.getPaymentResult().getBytes(("GBK"))));
String data1 = new String(Base64.decode(data0.toCharArray()),"GBK");
// 注意编码格式,注意用于加密,解密的要是同
- JavaWeb之JSP概述
ihuning
javaweb
什么是JSP?为什么使用JSP?
JSP表示Java Server Page,即嵌有Java代码的HTML页面。使用JSP是因为在HTML中嵌入Java代码比在Java代码中拼接字符串更容易、更方便和更高效。
JSP起源
在很多动态网页中,绝大部分内容都是固定不变的,只有局部内容需要动态产生和改变。
如果使用Servl
- apple watch 指南
啸笑天
apple
1. 文档
WatchKit Programming Guide(中译在线版 By @CocoaChina) 译文 译者 原文 概览 - 开始为 Apple Watch 进行开发 @星夜暮晨 Overview - Developing for Apple Watch 概览 - 配置 Xcode 项目 - Overview - Configuring Yo
- java经典的基础题目
macroli
java编程
1.列举出 10个JAVA语言的优势 a:免费,开源,跨平台(平台独立性),简单易用,功能完善,面向对象,健壮性,多线程,结构中立,企业应用的成熟平台, 无线应用 2.列举出JAVA中10个面向对象编程的术语 a:包,类,接口,对象,属性,方法,构造器,继承,封装,多态,抽象,范型 3.列举出JAVA中6个比较常用的包 Java.lang;java.util;java.io;java.sql;ja
- 你所不知道神奇的js replace正则表达式
qiaolevip
每天进步一点点学习永无止境纵观千象regex
var v = 'C9CFBAA3CAD0';
console.log(v);
var arr = v.split('');
for (var i = 0; i < arr.length; i ++) {
if (i % 2 == 0) arr[i] = '%' + arr[i];
}
console.log(arr.join(''));
console.log(v.r
- [一起学Hive]之十五-分析Hive表和分区的统计信息(Statistics)
superlxw1234
hivehive分析表hive统计信息hive Statistics
关键字:Hive统计信息、分析Hive表、Hive Statistics
类似于Oracle的分析表,Hive中也提供了分析表和分区的功能,通过自动和手动分析Hive表,将Hive表的一些统计信息存储到元数据中。
表和分区的统计信息主要包括:行数、文件数、原始数据大小、所占存储大小、最后一次操作时间等;
14.1 新表的统计信息
对于一个新创建
- Spring Boot 1.2.5 发布
wiselyman
spring boot
Spring Boot 1.2.5已在7月2日发布,现在可以从spring的maven库和maven中心库下载。
这个版本是一个维护的发布版,主要是一些修复以及将Spring的依赖提升至4.1.7(包含重要的安全修复)。
官方建议所有的Spring Boot用户升级这个版本。
项目首页 | 源