Task Schedule
Problem Description
Our geometry princess XMM has stoped her study in computational geometry to concentrate on her newly opened factory. Her factory has introduced M new machines in order to process the coming N tasks. For the i-th task, the factory has to start processing it at or after day Si, process it for Pi days, and finish the task before or at day Ei. A machine can only work on one task at a time, and each task can be processed by at most one machine at a time. However, a task can be interrupted and processed on different machines on different days.
Now she wonders whether he has a feasible schedule to finish all the tasks in time. She turns to you for help.
Input
On the first line comes an integer T(T<=20), indicating the number of test cases.
You are given two integer N(N<=500) and M(M<=200) on the first line of each test case. Then on each of next N lines are three integers Pi, Si and Ei (1<=Pi, Si, Ei<=500), which have the meaning described in the description. It is guaranteed that in a feasible schedule every task that can be finished will be done before or at its end day.
Output
For each test case, print “Case x: ” first, where x is the case number. If there exists a feasible schedule to finish all the tasks, print “Yes”, otherwise print “No”.
Print a blank line after each test case.
Sample Input
2
4 3
1 3 5
1 1 4
2 3 7
3 5 9
2 2
2 1 3
1 2 2
Sample Output
Author
allenlowesy
Source
2010 ACM-ICPC Multi-University Training Contest(13)——Host by UESTC
Recommend
zhouzeyong | We have carefully selected several similar problems for you: 1532 3491 1533 3416 3081
邻接表dinic没什么好说的,dinic相对于朴素增广路算法就是增加了层次图,每次取消所有同层次点之间的边(为什么是对的呢?因为如果计算完当前层次图的话,如果现在同层次之间的边会成为下次层次图中不同层次的边,然后所有情况都会被计算进去),如果一个点的层次比终点的层次大(怎么办呢?计算完当前层次图之后,如果这个点与终点联通,在不断计算层次图的过程中,迟早会出现只有通过这个点的路还联通终点的情况,这样这个点的层次在这次计算就比终点的层次小了)
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
#define N 1005
const int inf=0x7ffffff;
int cnt,n,m,t;
int head[N],dist[N];
struct node
{
int u,v,w,next;
}edge[N*N];
int min(int x,int y)
{
return x>y?y:x;
}
void add(int u,int v,int w)
{
edge[cnt].u=u;
edge[cnt].v=v;
edge[cnt].w=w;
edge[cnt].next=head[u];
head[u]=cnt++;
edge[cnt].u=v;
edge[cnt].v=u;
edge[cnt].w=0;
edge[cnt].next=head[v];
head[v]=cnt++;
}
int bfs()//寻早新的层次图
{
int i,u,v;
queue<int>q;
memset(dist,0,sizeof(dist));
u=0;
dist[u]=1;
q.push(u);
while(!q.empty())
{
u=q.front();
q.pop();
for(i=head[u];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(edge[i].w&&!dist[v])
{
dist[v]=dist[u]+1;
if(v==t)
return 1;
q.push(v);
}
}
}
return 0;
}
int dfs(int s,int lim)//lim记录当前路上的最大流
{
int i,tmp,v,cost=0;
if(s==t)
return lim;
for(i=head[s];i!=-1;i=edge[i].next)
{
v=edge[i].v;
if(edge[i].w&&dist[s]==dist[v]-1)//前往下一个层次
{
tmp=dfs(v,min(lim-cost,edge[i].w));
if(tmp>0)
{
edge[i].w-=tmp;
edge[i^1].w+=tmp;
cost+=tmp;
if(cost==lim)
break;
}
else
dist[v]=-1;
}
}
return cost;
}
int dinic()
{
int ans=0,s=0;
while(bfs())//搜索当前层次图
ans+=dfs(s,inf);//若层次图存在,则将当前层次图所有可增广的路都增广
return ans;
}
int main()
{
freopen("C:\\Users\\Administrator\\Desktop\\input.txt","r",stdin);
int i,j,T,sum,t1,t2,cas=1;
int s[N],e[N],p[N];
scanf("%d",&T);
while(T--)
{
scanf("%d%d",&n,&m);
t1=N;t2=0;
sum=0;
for(i=1;i<=n;i++)
{
scanf("%d%d%d",&p[i],&s[i],&e[i]);
t1=min(t1,s[i]);
t2=max(t2,e[i]);
sum+=p[i];
}
cnt=0;
memset(head,-1,sizeof(head));
for(i=1;i<=n;i++)
{
add(0,i,p[i]);
}
t=n+t2-t1+1+1;
for(i=1;i<=n;i++)
{
for(j=s[i];j<=e[i];j++)
{
add(i,n+j-t1+1,1);
}
}
for(i=t1;i<=t2;i++)
add(n+i-t1+1,t,m);
if(sum==dinic())
printf("Case %d: Yes\n\n",cas++);
else
printf("Case %d: No\n\n",cas++);
}
return 0;
}