- 动态规划、背包问题入门
2303_Alpha
动态规划代理模式算法笔记c语言
目录1、动态规划定义2、数塔问题题目描述:思路:代码实现:3、最长有序子序列问题描述:代码实现:动态规划基本思想特点4、背包问题①01背包问题空间复杂度优化②完全背包③多重背包二进制优化④二维费用背包1、动态规划定义动态规划是一种用于解决优化问题的算法策略,它的核心是把一个复杂的问题分解为一系列相互关联的子问题,并通过求解子问题的最优解来构建原问题的最优解。它将一个问题分解为若干个子问题,然后从最
- 深入理解背包问题:从理论到实践
a.原味瓜子
C++算法人工智能
目录一、什么是背包问题?基本概念二、背包问题的常见类型1.0-1背包问题2.完全背包问题3.多重背包问题4.分数背包问题三、0-1背包问题的动态规划解法1.基本思路2.C++实现代码3.空间优化版本四、完全背包问题的解法1.基本思路2.C++实现代码五、背包问题的实际应用六、经典例题与解答例题1:分割等和子集(LeetCode416)例题2:目标和(LeetCode494)七、背包问题的优化技巧八
- 混合背包(01,多重,完全)
YouQian772
动态规划算法
题目描述有N种物品和一个容量是V的背包。物品一共有三类:第一类物品只能用1次(01背包);第二类物品可以用无限次(完全背包);第三类物品最多只能用si次(多重背包);每种体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔
- 贪心算法应用:多重背包启发式问题详解
纪元A梦
贪心算法贪心算法算法java
贪心算法应用:多重背包启发式问题详解多重背包问题是经典的组合优化问题,也是贪心算法的重要应用场景。本文将全面深入地探讨Java中如何利用贪心算法解决多重背包问题。多重背包问题定义**多重背包问题(MultipleKnapsackProblem)**是背包问题的变种,描述如下:给定一个容量为W的背包有n种物品,每种物品i有:重量w_i价值v_i最大可用数量c_i(每种物品可以选择0到c_i个)目标:
- 动态规划--每日一练(多重背包计数类DP)
噜噜啦啦~
动态规划动态规划算法
P1077[NOIP2012普及组]摆花1.题目描述2.解题思路3.代码展示1.题目描述小明的花店新开张,为了吸引顾客,他想在花店的门口摆上一排花,共m盆。通过调查顾客的喜好,小明列出了顾客最喜欢的n种花,从1到n标号。为了在门口展出更多种花,规定第i种花不能超过ai盆,摆花时同一种花放在一起,且不同种类的花需按标号的从小到大的顺序依次摆列。试编程计算,一共有多少种不同的摆花方案。输入格式第一行包
- 代码随想录算法训练营 Day35 动态规划Ⅲ 0-1背包问题
JK0x07
算法动态规划
动态规划背包问题(0-1背包问题)0-1背包:n个物品,每个物品只有一个完全背包:n种物品,每个物品有无限个多重背包:n种物品,每个物品个数不相同暴力解法场景题目类型给出表格,背包最大容量n,说怎么装利益最大化重量价值物品0115物品1320物品2430暴力解法就是穷举(回溯)当装满了背包统计价值再试试其他的,这样穷举所有可能情况,得出最佳结论动态规划思路Dp数组定义Dp说明dp[i][j]在[0
- 代码随想录算法训练营 Day38 动态规划Ⅵ 完全背包应用 多重背包
JK0x07
算法动态规划
动态规划组合与排列DP求组合数是外层遍历物品,内层遍历背包DP求排列数是外层遍历背包,内层遍历物品多重背包多重体现在多个0-1背包,一个物品是有限个的背包问题有N种物品和一个容量为V的背包。第i种物品最多有Mi件可用,每件耗费的空间是Ci,价值是Wi。求解将哪些物品装入背包可使这些物品的耗费的空间总和不超过背包容量,且价值总和最大。多重背包和01背包是非常像的,为什么和01背包像呢?每件物品最多有
- 【蓝桥杯】01背包 完全背包 多重背包 模板及优化
遥感小萌新
蓝桥杯蓝桥杯算法职场和发展
01背包N,V=map(int,input().split())w=[0]*(N+1)#体积c=[0]*(N+1)#价格dp=[[0]*(V+1)foriinrange(N+1)]#dp[i][j]前i个物品空间j下最大价值foriinrange(1,N+1):w[i],c[i]=map(int,input().split())foriinrange(1,N+1):forjinrange(1,V+
- 【动态规划】背包问题(01背包,完全背包,多重背包,分组背包)
triticale
算法动态规划算法
01背包有N件物品和一个容量是V的背包。每件物品只能使用一次。第i件物品的体积是viv_ivi,价值是wiw_iwi。求解将哪些物品装入背包,可使这些物品的总体积不超过背包容量,且总价值最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品数量和背包容积。接下来有N行,每行两个整数viv_ivi,wiw_iwi,用空格隔开,分别表示第i件物品的体积和价值。输出格式输出一个整数
- 动态规划分享之 —— 买卖股票的最佳时机
他们都不看好你,偏偏你最不争气
动态规划算法c++
我今天分享的是关于动态规划中最有名的一组题目——股票买卖问题。为什么选它?因为它覆盖了大部分DP的建模套路,同时题意又很好理解,非常适合入门。DP类型简要说明典型例子1.线性DP当前状态只与前一两个状态有关斐波那契数列、爬楼梯、打家劫舍2.区间DP处理“区间”上问题括号匹配、石子合并3.背包DP决策是否选某个物品01背包、完全背包、多重背包4.树形DP在树结构上处理最优解树的直径、选点问题5.状压
- 动态规划 (Dynamic Programming)
nuo534202
学习笔记动态规划算法c++
文章目录背包DP01背包完全背包多重背包混合背包背包DP01背包1.洛谷P2871[USACO07DEC]CharmBraceletS题目链接:洛谷P287101背包模板题,不过多解释。#includeusingnamespacestd;constexprintN=3500,M=13000;intn,m,w[N],d[N],dp[M];intmain(){ios::sync_with_stdio(
- NO.86十六届蓝桥杯备战|动态规划-01背包|采药|小A点菜|Cow Frisbee Team(C++)
ChoSeitaku
蓝桥杯备考蓝桥杯动态规划c++
背包问题是动态规划中最经典的问题,很多题⽬或多或少都有背包问题的影⼦。它的基本形式是:给定⼀组物品,每个物品有体积和价值,在不超过背包容量的情况下,选择物品使得总价值最⼤。背包问题有多种变体,主要包括:01背包问题:每种物品只能选或不选(选0次或1次)。完全背包问题:每种物品可以选择⽆限次。多重背包问题:每种物品有数量限制。分组背包问题:物品被分为若⼲组,每组只能选⼀个物品。混合背包:以上四种背包
- 【算法】动态规划 - 背包问题总结(三)
妄想的男孩
算法算法动态规划
概述上次介绍完了完全背包问题,今天将介绍背包问题中的多重背包和分组背包问题。回顾一下背包问题的所要解决的问题是:有N个物品,有一个容积为V的背包,每个物品有两个属性:体积v[i]和价值w[i]。在背包能装下的前提下,能装的物品的最大价值是多少?多重背包多重背包与前两个背包问题不同的是,每件物品的个数不一,用s[i]表示。多重背包问题链接:多重背包问题I多重背包问题II状态转移方程让我们再回忆一下求
- 算法方法快速回顾
托塔1
Unity知识快速回顾算法
(待修改)目录1.双指针2.滑动窗口理论基础3.二分查找3.二分查找理论基础4.KMP5.回溯算法6.贪心算法7.动态规划7.1.01背包7.2.完全背包7.3.多重背包8.单调栈9.并查集10.图论10.1.广度优先搜索(BFS)10.2.深度优先搜索(DFS)10.3.Dijkstra算法10.4.Floyd-Warshall算法11.哈希算法12.排序算法12.1.冒泡排序12.2.选择排序
- 蓝桥杯C++基础算法-多重背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法。多重背包问题与完全背包问题类似,但每个物品有其数量限制。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积v[i]、价值w[i]和数量s[i],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.动态规划的概念动态规划是一种常用的算法技巧,
- 蓝桥杯C++基础算法-分组背包
sin2580
C++蓝桥杯c++算法
这段代码实现了一个分组背包问题的动态规划解法。与之前的多重背包问题不同,这里的每个物品有多个不同的体积和价值组合,而不是单一的体积和价值。以下是代码的详细思路解析:1.问题背景给定n个物品组,每个物品组有s[i]个不同的物品,每个物品有其体积v[i][j]和价值w[i][j],以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。2.动态规划的概念动态规划是一种常用的算
- 蓝桥杯C++基础算法-多重背包(优化)
sin2580
C++蓝桥杯c++算法
这段代码实现了一个多重背包问题的动态规划解法,并且使用了二进制拆分(或称二进制优化)来优化物品的数量处理。这种方法可以显著减少状态转移的次数,提高算法的效率。以下是代码的详细思路解析:1.问题背景给定n个物品,每个物品有其体积a、价值b和数量s,以及一个容量为m的背包。目标是选择物品使得总价值最大,同时总容量不超过背包的容量。与完全背包问题不同的是,多重背包问题中每个物品的数量是有限的。2.二进制
- 蓝桥杯常见算法模板(Python组)
-777.
蓝桥杯算法
目录1.二分1.整数二分(二分答案):2.浮点数二分(考不到)2.前缀和、差分1.前缀和一维:二维:2.差分一维:二维:3.贪心4.线性DP1.最长上升子序列(子序列问题一般下标从一开始)2.最长公共子序列3.常见背包模型1.0-1背包2.完全背包3.多重背包4.混合背包5.二维费用背包6.分组背包5.搜索1.DFS模板:1.子集问题2.全排列问题2.BFS6.数据结构1.并查集2.树状数组3.树
- leetcode刷题-动态规划06
emmmmXxxy
leetcode动态规划算法
代码随想录动态规划part06|322.零钱兑换、279.完全平方数、139.单词拆分322.零钱兑换279.完全平方数139.单词拆分关于多重背包,你该了解这些!背包问题总结篇!322.零钱兑换leetcode题目链接代码随想录文档讲解思路:完全背包整理:完全背包理论基础:装满这个背包可得的最大价值(遍历顺序可以颠倒)零钱兑换2:装满背包有多少种方法(每种方法不强调顺序,组合数)(先遍历物品再遍
- 动态规划之背包问题--python版本
我是小码搬运工
#python基础动态规划背包问题python版本
动态规划之背包问题–python版本问题已知一个最大量的背包,给定一组给定固定价值和固定体积的物品,求在不超过最大值的前提下,能放入背包中的最大总价值。解题思路该问题是典型的动态规划问题,分为三种不同的类型(0-1背包问题、完全背包和多重背包问题)解题关键–状态转移表达式:B(k,C)=max(B(k−1,C),B(k−1,C−ci)+vi)B(k,C)=max(B(k-1,C),B(k-1,C-
- 动态规划之背包问题
于冬恋
动态规划算法
动态规划是一个重要的算法范式,它将一个问题分解为一系列更小的子问题,并通过存储子问题的解来避免重复计算,从而大幅提升时间效率。目录01背包问题完全背包问题多重背包问题二维费用背包问题(1)01背包问题给定n个物体,和一个容量为c的背包,物品i的重量为wi,其价值为应该如何选择装入背包的物品使其获得的总价值最大。可以用贪心算法,但是不一定能达到最优解,所以用动态规划解决创建一个数组dp[i][j]i
- 算法竞赛备赛——【背包DP】多重背包
Aurora_wmroy
算法竞赛备赛算法动态规划c++数据结构蓝桥杯
多重背包基础模型有一个体积为V的背包,商店有n种物品,每种物品有一个价值v和体积w,每种物品有s个,问能够装下物品的最大价值。这里每一种物品只有s+1种状态即“拿0个、1个、2个…s个”在基础版模型中,多重背包就是将每种物品的s个摊开,变为s种相同的物品,从而退化成01背包处理只需要在01背包的基础上稍加改动,对每一个物品循环更新s次即可时间复杂度为O(nsV)例题小明的背包3蓝桥知识点:DP——
- 动态规划之背包问题(01背包,完全背包,多重背包,分组背包)
Fansv587
动态规划算法经验分享python
0、1背包问题概述0-1背包问题是一个经典的组合优化问题,属于动态规划算法的典型应用场景。该问题描述如下:有一个容量为C的背包,以及n个物品,每个物品有对应的重量wiw_iwi和价值vi(i=1,2...n)v_i(i=1,2...n)vi(i=1,2...n)。对于每个物品,我们只有两种选择:要么将其放入背包,要么不放入,即“0-1”选择(选是1,不选是0)。目标是在不超过背包容量的前提下,选择
- 算法题 背包问题-多重背包 二进制优化版本(Python)
武倔
算法题Python每日算法题算法python动态规划leetcode背包问题
题目有N种物品和一个容量是V的背包。第i种物品最多有si件,每件体积是vi,价值是wi。求解将哪些物品装入背包,可使物品体积总和不超过背包容量,且价值总和最大。输出最大价值。输入格式第一行两个整数,N,V,用空格隔开,分别表示物品种数和背包容积。接下来有N行,每行三个整数vi,wi,si,用空格隔开,分别表示第i种物品的体积、价值和数量。输出格式输出一个整数,表示最大价值。数据范围0=t:forj
- 算法训练day51Leetcode139.单词拆分 多重背包了解 背包问题总结
dc爱傲雪和技术
算法训练算法
139.单词拆分.-力扣(LeetCode)题目分析初始化:初始化一个布尔型向量dp,大小为s.size()+1,所有值初始化为false,除了dp[0]被设置为true。这个布尔数组代表字符串s[0..i]能否通过拼接字典中的单词来形成。dp[0]=true的原因是一个空字符串总是可以被形成。转换wordDict:输入的wordDict被转换成一个无序集合wordset,以便高效查找单词。动态规
- 动态规划——背包问题
kaili_ya
动态规划算法
动态规划——背包问题背包问题0-1背包问题描述解题思路优化完全背包解题思路优化多重背包解题思路1解题思路2恰好装满问题描述解题思路优化背包问题0-1背包一共有n件物品,第i(i从1开始)件物品的重量为w[i],价值为v[i]。在总重量不超过背包承载上限W的情况下,能够装入背包的最大价值是多少?问题描述假如你要去野营,你有一个容量为6磅的背吧,需要觉得该携带下面的哪些东西。其中每样东西都有相应的价值
- 【算法】动态规划专题⑩ —— 混合背包问题 python
查理零世
动态规划专题算法动态规划python
目录前置知识进入正题总结前置知识【算法】动态规划专题⑤——0-1背包问题+滚动数组优化【算法】动态规划专题⑥——完全背包问题python【算法】动态规划专题⑦——多重背包问题+二进制分解优化python混合背包结合了三种不同类型的背包问题:0/1背包、完全背包和多重背包进入正题混合背包问题https://www.acwing.com/problem/content/description/7/题目
- c++背包九讲之二维费用背包问题
永不为辅
一、背包九讲总述关于动态规划问题,最典型的就是背包九讲,先理解背包九讲后再总结关于动态规划的问题1、01背包问题2、完全背包问题3、多重背包问题4、混合背包问题5、二维费用的背包问题6、分组背包问题7、背包问题求方案数8、求背包问题的方案9、有依赖的背包问题往前四篇博文已经介绍了前四个问题,有需要的同学可以看一下!!二、二维费用背包问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用,选择
- 多维多重背包问题_各种背包五(二维费用背包问题)
zLiM5
多维多重背包问题
问题二维费用的背包问题是指:对于每件物品,具有两种不同的费用;选择这件物品必须同时付出这两种代价;对于每种代价都有一个可付出的最大值(背包容量)。问怎样选择物品可以得到最大的价值。设这两种代价分别为代价1和代价2,第i件物品所需的两种代价分别为a[i]和b[i]。两种代价可付出的最大值(两种背包容量)分别为V和U。物品的价值为w[i]。算法费用加了一维,只需状态也加一维即可。设f[i][v][u]
- DP优化专题
pytKonnyaku
算法动态规划
文章目录倍增优化DP[NOIP2012提高组]开车旅行题目描述输入格式输出格式数据结构优化DP清理班次2赤壁之战估算单调队列优化DP[SCOI2010]股票交易题目描述裁剪序列单调队列优化多重背包斜率优化DPⅠ状态转移方程Ⅱ决策点关系Ⅲ凸壳Ⅳ维护答案Ⅴ特殊性Ⅵ模板CodeⅦ注意事项K匿名序列四边形不等式优化DP定义:定理:一维线性DP的四边形不等式优化决策单调性定理二维四边形不等式优化DP决策单调
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro