A number that reads the same from right to left as when read from left to right is called a palindrome. The number 12321 is a palindrome; the number 77778 is not. Of course, palindromes have neither leading nor trailing zeroes, so 0220 is not a palindrome.
The number 21 (base 10) is not palindrome in base 10, but the number 21 (base 10) is, in fact, a palindrome in base 2 (10101).
Write a program that reads two numbers (expressed in base 10):
Solutions to this problem do not require manipulating integers larger than the standard 32 bits.
A single line with space separated integers N and S.
3 25
26 27 28
/* ID: jszhais1 PROG: dualpal LANG: C++ */ //#include "stdafx.h" //#include <iostream> #include <fstream> using namespace std; int main() { ofstream fout("dualpal.out"); ifstream fin("dualpal.in"); int zs_hexConversion(int num , const int &hex,char* zs_Num); bool isPalindromes(int length,const char* zs_Num); char zs_Num[2048]; int N,S,count_s=0,length; fin>>N>>S; while(count_s<N) { S++; int count_n=0; for(int hex=2;count_n<2&&hex<=10;hex++) { length = zs_hexConversion(S,hex,zs_Num); if(isPalindromes(length,zs_Num)) {count_n++;} } if(count_n>=2) { count_s++; fout<<S<<endl; } } return 0; } int zs_hexConversion(int num , const int &hex,char* zs_Num) { int i=0,tempN=0; for(;num!=0;i++) { tempN = num%hex; num = num/hex; zs_Num[i]='0'+tempN; } zs_Num[i]='\0'; return i; } bool isPalindromes(int length,const char* zs_Num) { length--; for(int i=0;i<length;i++,length--) { if(zs_Num[i]!=zs_Num[length]) return false; } return true; }思路:
Dual palindromes are actually very common, a fact we can test by writing a program such as this one.
Since they are very common, we can just use a brute force search to test all numbers bigger than s until we find enough dual palindromes.
How do we know they are common enough? Write the brute force program (which is very simple and thus not much effort) and check.
This reasoning is a little circular, but if we had been wrong and ended up needing a more clever and more efficient algorithm, we would have this brute force version to test against.
#include <stdio.h> #include <stdlib.h> #include <string.h> #include <assert.h> /* is string s a palindrome? */ int ispal(char *s) { char *t; t = s+strlen(s)-1; for(t=s+strlen(s)-1; s<t; s++, t--) if(*s != *t) return 0; return 1; } /* put the base b representation of n into s: 0 is represented by "" */ char* numbconv(char *s, int n, int b) { int len; if(n == 0) { strcpy(s, ""); return s; } /* figure out first n-1 digits */ numbconv(s, n/b, b); /* add last digit */ len = strlen(s); s[len] = "0123456789ABCDEFGHIJKLMNOPQRSTUVWXYZ"[n%b]; s[len+1] = '\0'; return s; } /* is number n a dual palindrome? */ int isdualpal(int n) { int i, j, npal; char s[40]; npal = 0; for(i=2; i<=10; i++) if(ispal(numbconv(s, n, i))) npal++; return npal >= 2; } void main(void) { FILE *fin, *fout; int n, s; fin = fopen("dualpal.in", "r"); fout = fopen("dualpal.out", "w"); assert(fin != NULL && fout != NULL); fscanf(fin, "%d %d", &n, &s); for(s++; n>0; s++) { if(isdualpal(s)) { fprintf(fout, "%d\n", s); n--; } } exit(0); }USACO Gateway | Comment or Question