- vivadoIP核FFT的使用
干饭不留名
fpga开发fpga
FFT配置讲解*(1)表示几个通道,这里我采用1024个点不同频率的正弦波。采用一通道(2)表示通道点的个数。(3)给FFT作用的时钟频率(4)从上到下。算法越来越简单。*(1)输入数据的格式,我选择的为定点,还有浮点数据格式。(2)选择算法类似上一张图的第四点。来考虑数据溢出。(3)类似四舍五入对数据进行截断,进行判断的。(4)输入数据的位宽。(5)低电平复位(6)有正序和倒序输出。我选择的正序
- FFT处理能力计算
FFT处理能力计算复数运算次数和实数运算次数之间的关系假设复数z1=a+bi,z2=c+di复数乘法:z1×z2=(a+bi)×(c+di)=(a×c-b×d)+(a×d+b×c)i,从上式可以看出1次复数乘法运算=4次实数乘法+2次实数加法(括号内1个减法和1个加法,共两个)。复数加法:z1+z2=(a+bi)+(c+di)=(a+c)+(b+d)i,从上式可以看出1次复数加法运算=2次实数加法
- Codeforces Round 181(Div 2)
昨天晚上又自(bei)愿(po)打了一场cf,一看是div2难度的直接炸了,听说这个难度的第三题就已经是1500分的水平了,所以我还是准备开两个题就睡觉的(太晚了),没想到我还是低估了div2难度的前两个题,还是有点意思的,特别是第一题就让我卡了好久(什么时候我才能练成看样例就能AC的佬)。A.DifficultContest题目传送门:Problem-A这道题就是让找字符串中的"FFT"和"NT
- 14.3 FFT与PEFT终极对决:1%参数实现3倍速训练,显存暴降80%!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能机器学习大数据语言模型chatgptllama
以微调权重比例分类:FFTvsPEFT深度解析在大模型微调领域,参数调整比例直接决定训练效率与模型性能的平衡。本小节将深入解析全参数微调(FullFine-Tuning,FFT)与参数高效微调(Parameter-EfficientFine-Tuning,PEFT)的核心差异,并通过具体技术方案对比和实战代码示例揭示其工程应用场景。一、FFT与PEFT技术对比矩阵
- FPGA通信设计十问
1.FFT有什么用?FFT(快速傅里叶变换)是离散傅里叶变换(DFT)的高效实现算法,它的核心作用是快速将信号从时域转换到频域,从而简化信号分析和处理的过程。自然界的信号(如声音、图像、电磁波等)通常以时域形式存在(即随时间变化的波形),但很多特性(如频率成分、谐波分布)在频域中更易分析FFT能快速计算信号中各频率分量的幅值和相位。可以进行频率拆分与实时处理。FFT是“信号的透视镜”,让我们能“看
- FPGA相关通信问题详解
霖12
fpga开发笔记信号处理信息与通信学习开发语言
首先感谢大佬@征途黯然.-CSDN博客的就我的上篇文章《FPGA通信设计十问》提出的问题,我在此做出回复一.解释FFT(快速傅里叶变换)如何在FPGA的IP核中高效实现FFT作为将时域信号转换为频域的核心算法,其在FPGA中的高效实现依赖于硬件架构与算法特性的深度适配。1.流水线架构:提升吞吐量FFT的核心是“蝶形运算”,其计算过程可分解为log2(N)级(N为FFT点数),每级包含N/2次蝶形运
- 基于FPGA的二维FFT实现
廉连曼
基于FPGA的二维FFT实现【下载地址】基于FPGA的二维FFT实现本项目提供了一种基于FPGA的高效二维FFT实现方案,专为数字信号处理和图像处理领域设计。通过并行使用两个一维FFT单元,本方案显著提升了二维FFT变换的计算效率,并基于Xilinx的FFTIP核,确保易于集成到其他FPGA设计中。该方案适用于各类频谱分析场景,尤其适合图像处理系统。经过Verilog编程和Modelsim仿真测试
- 【FFT】基于FPGA的FFT傅里叶变换和相位计算系统设计
fpga和matlab
★FPGA项目经验板块19:信号发生器fpga开发FFT相位计算
1.软件版本ISE14.7,modeslimSE,10.1c2.系统仿真与分析第1步:信号源的产生主要通过rom将产生的数据保存到rom中,然后,我们再仿真的时候调用即可。这个部分仿真效果如下所示,你给的程序中,这个部分主要有两个数据源,一个是1025,一个是N为1024,我们这里分别将这两个数据量化之后保存到rom中,仿真如下所示:
- 基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用
风吹麦很
fpga开发嵌入式
基于FPGA的快速傅里叶变换(FFT)设计在嵌入式系统中的应用快速傅里叶变换(FastFourierTransform,FFT)是一种重要的信号处理算法,在许多领域中都得到广泛的应用,例如通信系统、雷达技术、图像处理等。为了提高FFT的计算性能和实时性,将其设计为硬件加速器常常是一个明智的选择。本文将介绍基于现场可编程门阵列(Field-ProgrammableGateArray,FPGA)的FF
- 基于 STM32+FPGA 的快速傅里叶频域图像在 TFT 中显示的设计与实现(项目资料)(ID:8)
嵌入式资料库
嵌入式项目合集fpga开发stm32嵌入式硬件单片机
目录摘要1绪论1.1研究背景与意义1.2国内外研究现状1.3研究内容与目标2系统方案设计2.1总体架构设计2.2硬件方案设计2.2.1主控模块选型2.2.2FPGA模块选型2.2.3TFT显示模块选型2.2.4通信方案设计2.3软件方案设计2.3.1FFT算法实现方案2.3.2频域图像渲染方案3硬件电路设计3.1STM32最小系统电路3.2FPGA模块电路3.3TFT显示模块电路3.4软件IIC通
- Python和MATLAB数字信号波形和模型模拟
要点Python和MATLAB实现以下波形和模型模拟以给定采样率模拟正弦信号,生成给定参数的方波信号,生成给定参数隔离矩形脉冲,生成并绘制线性调频信号。快速傅里叶变换结果释义:复数离散傅里叶变换、频率仓和快速傅里叶变换移位,逆快速傅里叶变换移位,数值NumPy对比观察FFT移位和逆FFT移位。离散时域表示:余弦信号生成取样,使用FFT频域信号表示,使用FFT计算离散傅里叶变换DFT,获得幅度谱并提
- Matplotlib 库来可视化频谱泄漏和加窗的效果
Mark White
matplotlib
前言很多朋友学习音频技术的时候,不理解这个频谱泄漏是什么,我们这次写个小代码直观地感受一下代码演示:频谱泄漏与加窗我们将生成一个简单的正弦波信号,然后分别用**不加窗(矩形窗)和加窗(汉明窗)**的方式对其进行傅里叶变换,并对比它们的频谱图。你会清晰地看到加窗如何减少了频谱泄漏。importnumpyasnpimportmatplotlib.pyplotaspltfromscipy.fftimpo
- iOS 13 报错:[Assert] Unsupported use of UIKit view-customization API off the main thread
干志雄
iOSios
萤石摄像头回看,在iOS11上运行好好,在iOS13上却报错了,报错如下:2021-05-1115:36:38.174462+0800App-Beta[1141:430280][Assert]UnsupporteduseofUIKitview-customizationAPIoffthemainthread.-setBackgroundColor:sentto;layer=;contentOffs
- Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)
闲人编程
图像处理图像处理python计算机视觉FFTDCT傅里叶离散余弦变换
目录Python实现图像处理的快速傅里叶变换(FFT)或离散余弦变换(DCT)一、引言1.1图像处理简介1.2快速傅里叶变换与离散余弦变换简介1.3本文目标与结构二、理论背景与数学原理2.1快速傅里叶变换(FFT)介绍2.2离散余弦变换(DCT)介绍2.3两者的应用领域与区别三、算法实现3.1快速傅里叶变换(FFT)实现3.1.1使用Python实现FFT3.1.2图像的频域处理3.2离散余弦变换
- 信号处理算法:快速傅里叶变换(FFT)_(2).FFT算法的原理与实现
kkchenkx
信号处理技术仿真模拟信号处理算法
FFT算法的原理与实现1.引言快速傅里叶变换(FastFourierTransform,FFT)是一种高效的算法,用于计算离散傅里叶变换(DiscreteFourierTransform,DFT)及其逆变换。DFT在信号处理、图像处理、通信工程等领域中有着广泛的应用,但其计算复杂度为O(N2)O(N^2)O(
- 快速傅里叶变换(FFT)是什么?
Yashar Qian
信号处理快速傅里叶变换
快速傅里叶变换(FFT)是什么?快速傅里叶变换(FFT)本质上是一种极其高效的算法,用来计算**离散傅里叶变换(DFT)**及其逆变换。它是数字信号处理、科学计算和工程应用中最重要的算法之一。要理解FFT,先理解它要解决的问题:离散傅里叶变换(DFT)是什么?DFT全称:**DiscreteFourierTransform(离散傅里叶变换)想象你有一段数字化的信号(比如一段音频采样、图像像素数据、
- Fast Image Deconvolution using Hyper-Laplacian Priors论文阅读
青铜锁00
#退化论文阅读论文阅读图像处理
FastImageDeconvolutionusingHyper-LaplacianPriors1.论文的研究目标与实际意义2.论文的创新方法2.1核心框架:交替最小化(AlternatingMinimization)2.2x子问题:频域FFT加速2.3w子问题:高效求解的核心创新2.3.1问题形式2.3.2查找表法(LUT)2.3.3解析解法(特定α\alphaα)2.3.4通用α\alphaα
- VC++实现的快速傅里叶变换频谱分析软件
直推小新
本文还有配套的精品资源,点击获取简介:基于VC++和MFC的频谱分析程序通过快速傅里叶变换(FFT)技术,将时域信号转换至频域,实现对导入文本或Excel数据的离散谱分析。用户可通过图形界面轻松导入数据,选择分析选项并查看结果。程序利用FFT高效地计算频域数据,并通过图表展示信号频率成分。此分析工具适用于音频处理、通信、医学成像和机械故障诊断等领域。1.VC++和MFC框架介绍1.1VC++的发展
- Python实现快速傅里叶变换(FFT)
haodawei123
工作总结
importnumpyasnpimportmatplotlib.pyplotasplt#采样点选择1400个,因为设置的信号频率分量最高为600赫兹,根据采样定理知采样频率要大于信号频率2倍,所以这里设置采#样频率为1400赫兹(即一秒内有1400个采样点,一样意思的)x=np.linspace(0,1,1400)#设置需要采样的信号,频率分量有180,390和600y=7np.sin(2np.p
- 深入Python:实现FFT与DFT
weixin_42668301
本文还有配套的精品资源,点击获取简介:快速傅里叶变换(FFT)和离散傅里叶变换(DFT)是处理时域信号转换到频域的数字信号处理核心工具。本课程深入介绍FFT与DFT的原理及Python实现,涵盖从基本概念到使用numpy库进行信号处理的实战应用。学生将学习如何使用Python中的numpy库来执行DFT,掌握通过Cooley-Tukey算法实现的FFT来高效处理大型数据集。通过实际案例,理解如何分
- ArduinoFFT库版本差异导致峰值频率提取问题分析
尤颖贝Dora
ArduinoFFT库版本差异导致峰值频率提取问题分析arduinoFFTFastFourierTransformforArduino项目地址:https://gitcode.com/gh_mirrors/ar/arduinoFFT问题背景在使用ArduinoFFT库进行音频频率分析时,用户报告了不同版本间的兼容性问题。具体表现为:在使用ArduinoNano和MAX9814麦克风进行音频采样时,
- 工业物联网(IIoT)高保真架构案例
深山技术宅
物联网物联网架构数据库
以下是为您精心设计的工业物联网(IIoT)高保真架构案例,涵盖底层设备接入、边缘计算、云边协同及安全体系,全部基于真实工业场景提炼,附带技术决策要点和雷区警示:案例一:钢铁厂轧机预测性维护系统架构拓扑云端边缘层设备层ProfinetModbusTCPS7-300MQTTIIoT平台时序数据库数字孪生体维护工单系统边缘计算节点实时计算引擎FFT频谱分析温度场重建异常检测模型边缘网关轧机振动传感器红外
- 革新引擎调校:第三代高精度爆震监测系统重塑性能边界
Triv2025
爆震监测系统CAN总线记录多核DSP处理数据分析引擎调校工业级防水气缸独立增益
在竞技级引擎调校领域,毫秒级的爆震信号决定成败。新一代PLEXKNOCKMONITORV3发动机爆震分析仪,爆震监测系统以多核DSP架构、气缸级动态分析及实时FFT技术,将振动信号转化为可视化数据图谱,为工程师提供超越传统阈值的诊断维度。一、核心突破▍纳米级振动捕获44kHz高频采样率精准抓取燃烧室压力波动专用音频DSP芯片实现背景噪声动态滤波(信噪比提升300%)▍三维爆震建模独创3D动态阈值算
- MySQL 8.0的数据库root用户默认无法远程登录,需要修改root的远程授权
banzhenfei
数据库mysqladb
mysql>grantallprivilegeson.to‘root’@‘%’;ERROR1410(42000):YouarenotallowedtocreateauserwithGRANTmysql>usemysql;ReadingtableinformationforcompletionoftableandcolumnnamesYoucanturnoffthisfeaturetogetaqui
- TI 毫米波雷达走读系列—— 3DFFT及测角
雷达爆破手
mmWaveRadar毫米波雷达嵌入式硬件AWR/IWR系列单片机
TI毫米波雷达走读系列——3DFFT及测角测角原理——角度怎么测测角公式——角度怎么算相位差测角基本公式为什么是3DFFT1.空间频率与角度的对应关系2.FFT的数学本质:离散空间傅里叶变换测角原理——角度怎么测本节内容解决角度怎么测的问题,首先要根据测角的场景对测角过程进行建模。测角模型的第一个前提是前方目标距离雷达较远(远场),这样目标的反射波是到达雷达阵前是可以近似成一个平行波面,即反射波到
- FFT+LDPC
fpga和matlab
MATLAB板块4:编码译码
ticcloseallclearallclc%ミLDPCHonePerCol=3;onePerRow=6;coderate=(onePerRow-onePerCol)/onePerRow;%gallagerLDPC痻皚k=100;H1=zeros(k,k*onePerRow);fori=1:kH1(i,(i-1)*onePerRow+1:i*onePerRow)=ones(1,onePerRo
- 傅里叶变换原理与scipy.fft模块应用(九)
WHCIS
SciPyscipy算法python
引言傅里叶变换是信号处理和分析领域中最为强大的数学工具之一。它能够将信号从时域(随时间变化的表示)转换到频域(频率成分的表示),从而帮助我们从不同角度理解信号的特性。傅里叶变换在信号处理、图像处理、通信工程、谱分析等领域有着广泛的应用。本教程将深入探讨傅里叶变换的数学基础,详细介绍scipy.fft模块中主要函数的使用方法,对比时域和频域分析的实现差异,并通过实际案例演示频谱分析与滤波的工程实践方
- 基于51单片机的云梯逃生控制系统proteus仿真
weixin_46018613
51单片机proteus单片机
地址:https://pan.baidu.com/s/1ElsdTk27emXUPfK9iWFftQ提取码:1234仿真图:芯片/模块的特点:AT89C52/AT89C51简介:AT89C51是一款常用的8位单片机,由Atmel公司(现已被Microchip收购)生产。它基于标准的8051内核,并在此基础上进行了一些增强和改进。以下是AT89C51芯片的详细介绍:主要特性:内核:基于标准的8051
- 频域圆形区域划分+可视化
super春卷
图像处理
频域圆形区域划分+可视化一、简单说明 这是之前写的一部分创新性代码,现在整理讲解一下。 首先,通过FFT(快速傅里叶变化)进行频域分析是一般性的常规操作,通过频域的频域特征分析图像整体或是图像分块之后的小图像块,计算幅度谱最高值、均值或是标准差,可以去反映振动程度/振动强度/频域特征。 (这里补一下对于频谱和幅度谱的理解,简单来说,傅里叶变化将空间中的二维坐标点变为频谱中的频点,频点坐标(u
- 学习笔记-Windows-LOL
C-haidragon
windows学习网络javalinux
Windows-LOLLivingOffTheLand免责声明本文档仅供学习和研究使用,请勿使用文中的技术源码用于非法用途,任何人造成的任何负面影响,与本人无关.相关文章GetReverse-shellviaWindowsone-linerWhatAreLOLBinsandHowDoAttackersUseTheminFilelessAttacks?-CynetWindows文件下载执行的15种姿
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep