hdu3306 Another kind of Fibonacci

题目(http://acm.hdu.edu.cn/showproblem.php?pid=3306)

Problem Description
As we all known , the Fibonacci series : F(0) = 1, F(1) = 1, F(N) = F(N - 1) + F(N - 2) (N >= 2).Now we define another kind of Fibonacci : A(0) = 1 , A(1) = 1 , A(N) = X * A(N - 1) + Y * A(N - 2) (N >= 2).And we want to Calculate S(N) , S(N) = A(0)2 +A(1)2+……+A(n)2.



Input
There are several test cases.
Each test case will contain three integers , N, X , Y .
N : 2<= N <= 2311
X : 2<= X <= 2311
Y : 2<= Y <= 2311


Output
For each test case , output the answer of S(n).If the answer is too big , divide it by 10007 and give me the reminder.


Sample Input
2 1 1 
3 2 3 


Sample Output
6
196

还是直接构造矩阵,万能的!
f(n)=x*f(n-1)+y*f(n-2);推得
这里写图片描述
算得hdu3306 Another kind of Fibonacci_第1张图片

#include <iostream>
#define mod 10007;
using namespace std;
const int Max=4;
typedef struct
{
    long long m[Max][Max];
}Matrix;

Matrix P={1,1,0,0,
          0,0,0,0,
          0,1,0,0,
          0,0,0,0};
Matrix I={1,0,0,0,
          0,1,0,0,
          0,0,1,0,
          0,0,0,1};
Matrix matrixmul(Matrix a,Matrix b)
{
    Matrix c;
    for(int i=0;i<Max;i++)
       for(int j=0;j<Max;j++)
       {
           c.m[i][j]=0;
           for(int k=0;k<Max;k++)
           {
              c.m[i][j]+=(a.m[i][k]*b.m[k][j])%mod;
           }
           c.m[i][j]=c.m[i][j]%mod;
       }
       return c;
}
Matrix quickpow(long long n)
{
    Matrix m=P,b=I;
    while(n>=1)
    {
        if(n&1)
        b=matrixmul(b,m);
        n=n>>1;
        m=matrixmul(m,m);
    }
    return b;
}
int main()
{int n,x,y,sum;
 Matrix tmp;
 while(cin>>n>>x>>y)
 {
     sum=0;
     x%=mod;
     y%=mod;
     P.m[1][1]=(x*x)%mod;
     P.m[1][2]=(y*y)%mod;
     P.m[1][3]=(2*x*y)%mod
     P.m[3][1]=x;
     P.m[3][3]=y;
     tmp=quickpow(n);
     for(int i=0;i<4;i++)
     sum+=tmp.m[0][i]%mod;
     long long ans=sum%mod;
     cout<<ans<<endl;
 }

    return 0;
}

你可能感兴趣的:(hdu3306 Another kind of Fibonacci)