- Java并发核心:线程池使用技巧与最佳实践! | 多线程篇(五)
bug菌¹
Java实战(进阶版)javaJava零基础入门Java并发线程池多线程篇
本文收录于「Java进阶实战」专栏,专业攻坚指数级提升,希望能够助你一臂之力,帮你早日登顶实现财富自由;同时,欢迎大家关注&&收藏&&订阅!持续更新中,up!up!up!!环境说明:Windows10+IntelliJIDEA2021.3.2+Jdk1.8本文目录前言摘要正文何为线程池?为什么需要线程池?线程池的好处线程池使用场景如何创建线程池?线程池的常见配置源码解析案例分享案例代码演示案例运行
- 旧系统UI焕新陷阱:保留业务习惯与引入新交互的平衡点把控
贝格前端工场
ui交互
摘要**想给老旧系统换上“高颜值新衣”,却遭遇员工集体吐槽“不会用”?满心期待新交互能提升效率,结果用户操作频频出错,业务进度反而被拖慢?旧系统UI焕新本是优化体验的好机会,可在保留多年养成的业务操作习惯,与引入更先进便捷的新交互方式之间,却横亘着巨大鸿沟。稍有不慎,就会陷入“改了不如不改”的尴尬境地。这场关于“守旧”与“创新”的博弈,究竟该如何破局?一、旧系统UI焕新:一场甜蜜又棘手的改造工程旧
- 【Coze搞钱实战】3. 避坑指南:对话流设计中的6个致命错误(真实案例)
AI_DL_CODE
Coze平台对话流设计客服Bot避坑用户流失封号风险智能客服配置故障修复指南
摘要:对话流设计是智能客服Bot能否落地的核心环节,直接影响用户体验与业务安全。本文基于50+企业Bot部署故障分析,聚焦导致用户流失、投诉甚至封号的6大致命错误:无限循环追问、人工移交超时、敏感词过滤缺失、知识库冲突、未处理否定意图、跨平台适配失败。通过真实案例拆解每个错误的表现形式、技术根因及工业级解决方案,提供可直接复用的Coze配置代码、工作流模板和检测工具。文中包含对话流健康度检测工具使
- Qwen3 大模型实战:使用 vLLM 部署与函数调用(Function Call)全攻略
曦紫沐
大模型大模型部署Qwen3vLLM函数调用
文章摘要本文将带你从零开始,深入掌握如何使用Qwen3-8B大语言模型,结合vLLM进行高性能部署,并通过函数调用(FunctionCall)实现模型与外部工具的智能联动。我们将详细讲解部署命令、调用方式、代码示例及实际应用场景,帮助你快速构建基于Qwen3的智能应用。一、Qwen3简介与部署环境准备Qwen3是通义千问系列的最新一代大语言模型,具备强大的自然语言理解和生成能力,尤其在函数调用、工
- 你竟然还在用克隆删除?Conda最新版rename命令全攻略!
曦紫沐
Python基础知识conda虚拟环境管理
文章摘要Conda虚拟环境管理终于迎来革命性升级!本文揭秘Conda4.9+版本新增的rename黑科技,彻底告别传统“克隆+删除”的繁琐操作。从命令解析到实战案例,手把手教你如何安全高效地重命名Python虚拟环境,附带版本检测、环境迁移、故障排查等进阶技巧,助你提升开发效率10倍!一、颠覆认知:Conda居然自带重命名功能?很多开发者仍停留在“Conda无法直接重命名环境”的认知阶段,实际上自
- 大模型量化终极对决:FP8 vs AWQ INT4,谁才是性能与精度的王者?
曦紫沐
大模型人工智能大模型量化FP8AWQ_INT4
摘要在大模型部署与优化中,量化技术是突破性能瓶颈的关键。FP8量化与AWQINT4量化作为当前主流方案,分别以“高精度”和“极致压缩”为核心优势。本文通过表格对比二者的数据格式、精度损失、硬件依赖及适用场景,助您在不同需求下精准选择最优方案。一、数据格式:浮点与整数的底层差异FP8量化采用浮点数(FP8),包含E4M3(4位阶码+3位尾数)和E5M2(5位阶码+2位尾数)两种格式,保留动态范围;而
- 基于Python的AI健康助手:开发与部署全攻略
AI算力网络与通信
AI算力网络与通信原理AI人工智能大数据架构python人工智能开发语言ai
基于Python的AI健康助手:开发与部署全攻略关键词:Python、AI健康助手、机器学习、自然语言处理、Flask、部署、健康管理摘要:本文将详细介绍如何使用Python开发一个AI健康助手,从需求分析、技术选型到核心功能实现,再到最终部署上线的完整过程。我们将使用自然语言处理技术理解用户健康咨询,通过机器学习模型提供个性化建议,并展示如何用Flask框架构建Web应用接口。文章包含大量实际代
- Flutter权限插件详解:permission_handler使用指南
AI移动开发前沿
AI移动端开发宝典flutterai
Flutter权限插件详解:permission_handler使用指南关键词:Flutter、权限插件、permission_handler、权限管理、移动开发摘要:本文围绕Flutter开发中常用的权限插件permission_handler展开详细介绍。首先阐述了在Flutter应用开发中处理权限的背景和重要性,接着深入解析permission_handler的核心概念、架构以及工作原理,通
- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- 神经形态计算如何突破冯·诺依曼架构限制?
AI算力网络与通信
AI人工智能与大数据技术AI算力网络与通信原理AI人工智能大数据架构架构ai
神经形态计算如何突破冯·诺依曼架构限制?关键词:神经形态计算、冯·诺依曼架构、内存墙、存算一体、脉冲神经网络、类脑芯片、低功耗计算摘要:本文将从“冯·诺依曼架构的前世今生”讲起,用“图书馆管理员搬书”的生活案例类比其核心矛盾,再通过“人脑神经元工作模式”的比喻引入神经形态计算的核心原理。我们将一步步拆解冯·诺依曼架构的三大限制(内存墙、高功耗、非结构化数据处理弱),并对应解析神经形态计算的三大突破
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 数据分析领域中AI人工智能的发展前景展望
AI大模型应用工坊
AI大模型开发实战数据分析人工智能数据挖掘ai
数据分析领域中AI人工智能的发展前景展望关键词:数据分析、人工智能、机器学习、深度学习、数据挖掘、预测分析、自动化摘要:本文深入探讨了人工智能在数据分析领域的发展现状和未来趋势。我们将从核心技术原理出发,分析AI如何改变传统数据分析范式,详细讲解机器学习算法在数据分析中的应用,并通过实际案例展示AI驱动的数据分析解决方案。文章还将探讨行业应用场景、工具生态以及未来发展面临的挑战和机遇,为数据分析师
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- 数据中台中的数据科学工作台:Jupyter集成方案
AI大数据智能洞察
大数据与AI人工智能jupyter信息可视化ideai
数据中台中的数据科学工作台:Jupyter集成方案关键词:数据中台、数据科学工作台、JupyterNotebook、数据科学、机器学习、数据可视化、协作开发摘要:本文深入探讨了在数据中台架构中集成JupyterNotebook作为数据科学工作台的完整解决方案。我们将从数据中台的基本概念出发,详细分析Jupyter在数据科学工作流中的核心作用,介绍多种集成方案和技术实现细节,并通过实际案例展示如何构
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- 使用Python和Gradio构建实时数据可视化工具
PythonAI编程架构实战家
信息可视化python开发语言ai
使用Python和Gradio构建实时数据可视化工具关键词:Python、Gradio、数据可视化、实时数据、Web应用、交互式界面、数据科学摘要:本文将详细介绍如何使用Python和Gradio框架构建一个实时数据可视化工具。我们将从基础概念开始,逐步深入到核心算法实现,包括数据处理、可视化技术以及Gradio的交互式界面设计。通过实际项目案例,读者将学习如何创建一个功能完整、响应迅速的实时数据
- Python Gradio:实现交互式图像编辑
PythonAI编程架构实战家
Python编程之道python开发语言ai
PythonGradio:实现交互式图像编辑关键词:Python,Gradio,交互式图像编辑,计算机视觉,深度学习,图像处理,Web应用摘要:本文将深入探讨如何使用Python的Gradio库构建交互式图像编辑应用。我们将从基础概念开始,逐步介绍Gradio的核心功能,并通过实际代码示例展示如何实现各种图像处理功能。文章将涵盖图像滤镜应用、对象检测、风格迁移等高级功能,同时提供完整的项目实战案例
- 如何运用深度学习打造高效AI人工智能系统
AI智能探索者
AIAgent智能体开发实战人工智能深度学习ai
如何运用深度学习打造高效AI人工智能系统关键词:深度学习、AI系统、神经网络、模型优化、实战开发摘要:本文将从深度学习的核心概念出发,结合生活实例和代码实战,系统讲解如何构建高效AI系统。我们会拆解数据准备、模型设计、训练优化、部署落地的全流程,揭秘“数据-模型-训练-推理”的协同机制,并通过具体案例演示从0到1开发AI系统的关键技巧,帮助开发者掌握打造高效AI系统的底层逻辑。背景介绍目的和范围在
- 程序员职业发展:元学习比技术更重要?
AI天才研究院
AI人工智能与大数据学习ai
程序员职业发展:元学习比技术更重要?关键词:程序员职业发展、元学习、技术、学习能力、知识更新摘要:在快速发展的科技领域,程序员面临着技术不断更新换代的挑战。本文深入探讨了在程序员职业发展中,元学习与技术的重要性对比。通过分析元学习的核心概念、其在职业发展中的作用,结合技术的特点和局限,阐述了元学习为何可能在长远的职业发展中更为关键。同时,提供了实际的案例和操作步骤,介绍了相关的工具和资源,最后对未
- 《掌控习惯》好书共读活动上架信息
徐君宝
我是徐君宝,这是我的第666篇日记(2021年3月2日)。海报主文案:共读形式:135启智读书法共读书籍:《掌控习惯》一句话推荐语:人很容易高估某个决定性时刻的重要性,也很容易低估每天进行微小改变的价值。领读者:黄坤(樊登读书黄豆学院认证翻转师)共读时间:2021年3月9日(周二)19:00-21:30参与方式:线下参与共读地点:思明区前埔工业园61号万物社创想公社L101本书价值:了解行为转变的
- 2025.07 Java入门笔记01
殷浩焕
笔记
一、熟悉IDEA和Java语法(一)LiuCourseJavaOOP1.一直在用C++开发,python也用了些,Java是真的不熟,用什么IDE还是问的同事;2.一开始安装了jdk-23,拿VSCode当编辑器,在cmd窗口编译运行,也能玩;但是想正儿八经搞项目开发,还是需要IDE;3.安装了IDEA社区版:(1)IDE通常自带对应编程语言的安装包,例如IDEA自带jbr-21(和jdk是不同的
- 企业级RAG的数据方案选择 - 向量数据库、图数据库和知识图谱
南七小僧
AI技术产品经理网站开发人工智能数据库知识图谱人工智能
如何为企业RAG选择合适的数据存储方式摘要:本文讨论了矢量数据库、图数据库和知识图谱在解决信息检索挑战方面的重要性,特别是针对企业规模的检索增强生成(RAG)。看看海外人工智能企业Writer是如何利用知识图谱增强企业级RAG。要点概要:矢量数据库高效存储数据,但缺乏上下文和关联信息。图数据库优先考虑数据点之间的关系,受益于关系结构。知识图谱在语义存储方面表现出色,由于其能够编码丰富的上下文信息,
- 大厂都在用的前端缓存策略,你掌握了吗?
AI架构全栈开发实战笔记
前端缓存ai
大厂都在用的前端缓存策略,你掌握了吗?关键词:前端缓存、HTTP缓存、ServiceWorker、CDN缓存、缓存策略、性能优化、浏览器缓存摘要:本文将深入探讨前端开发中常用的缓存策略,从浏览器缓存到ServiceWorker,从HTTP缓存头到CDN缓存,全面解析大厂都在使用的高效缓存技术。通过生动的比喻和实际代码示例,帮助开发者理解并掌握这些提升Web应用性能的关键技术。背景介绍目的和范围本文
- 基于物联网及数字孪生技术的数字农业系统设计与实现
hrbcodefarmer
作者:曲井致摘要:数字农业是我国农业现代化的重要组成部分,是实现乡村振兴战略的有力抓手。物联网技术是实现数字农业的重要技术手段,数字孪生是物联网技术的重要技术,能够实现现实世界中事务在网络世界的数字映射,为了实现农业现代化,进一步解放人力物力,对远程监控和操控数字农业的深入研究具有非常重要的意义。在应用传感器检测技术和无线通信技术的基础上,大力发展数字农业,为我国农业现代化奠定了基础。本文从数字农
- 2019-3-16晨间日记
素若初心
今天是懒懒的日子起床:10:30就寝:12:00天气:晴心情:平静纪念日:无任务清单昨日完成的任务,最重要的三件事:1、爷爷出ICU,转进病房2、儿子在家观察照顾儿子3、打扫卫生(客厅角角落落)改进:不睡懒觉习惯养成:日更英语周目标·完成进度漫无目标爷爷进病房学习·信息·阅读速读健康·饮食·锻炼多吃青菜人际·家人·朋友陪护家人工作·思考无最美好的三件事1.懒懒的早晨2.电影《少年pi》3.和儿子聊
- 【利平2022日记】第997天-感恩之心
张利平专注国学教育139876
「早起奇迹」社群——张利平第88天早起(05:00-8:00)|正|知|正|念|正|行||早|起|创|造|奇|迹|「打造一个相互学习成长—砥砺前行—自利利他的生态社群」1:冥想15分钟;2:朗读感恩词,能量文;3:诵读《易经》三卦、《大学》全文、《论语》一节、《朱子治家格言》并摘抄;4:《我心光明成长营》第5期第12天学习并完成作业;5:陪孩子一起听能量早读并诵读《唐诗三百首》之五首,开心去学校;
- 从零开始构建深度学习环境:基于Pytorch、CUDA与cuDNN的虚拟环境搭建与实践(适合初学者)
荣华富贵8
程序员的知识储备2程序员的知识储备3深度学习pytorch人工智能
摘要:深度学习正在引领人工智能技术的革新,而对于初学者来说,正确搭建深度学习环境是迈向AI研究与应用的第一步。本文将为读者提供一套详尽的教程,指导如何在本地环境中搭建Pytorch、CUDA与cuDNN,以及如何利用Anaconda和PyCharm进行高效开发。内容涵盖从环境配置、常见错误修正,到基础的深度学习模型构建及训练。我们旨在为深度学习零基础的入门者提供一个全面且易于理解的“保姆级”教程,
- Consul 与 Hive:云原生数据仓库集成
AI云原生与云计算技术学院
AI云原生与云计算数据仓库consulhiveai
Consul与Hive:云原生数据仓库集成关键词:Consul、Hive、云原生、数据仓库集成、服务发现摘要:本文深入探讨了Consul与Hive在云原生环境下的数据仓库集成。首先介绍了集成的背景和相关概念,包括Consul的服务发现机制和Hive作为数据仓库的特点。接着详细阐述了核心概念及联系,通过文本示意图和Mermaid流程图展示其架构。对集成所涉及的核心算法原理进行了讲解,并给出Pytho
- Hive与Hudi集成:增量大数据处理方案
AI大数据智能洞察
大数据与AI人工智能大数据AI应用hivehadoop数据仓库ai
Hive与Hudi集成:增量大数据处理方案关键词:Hive、Hudi、增量大数据处理、数据集成、数据湖摘要:本文主要探讨了Hive与Hudi集成的增量大数据处理方案。我们将深入了解Hive和Hudi的核心概念,剖析它们之间的关系,详细阐述集成的算法原理与操作步骤,通过实际项目案例展示如何进行开发环境搭建、代码实现与解读。同时,会介绍该集成方案的实际应用场景、相关工具和资源,探讨未来发展趋势与挑战。
- 多通道 ISP(双 ISP)并行处理机制解析:架构演进、资源调度与实战配置路径
观熵
影像技术全景图谱:架构调优与实战接口隔离原则架构影像Camera
多通道ISP(双ISP)并行处理机制解析:架构演进、资源调度与实战配置路径关键词:双ISP、并行图像处理、多Sensor管线、分布式调度、ISP平衡调度、帧同步、多路输入、SoC图像架构摘要:随着智能手机多摄系统的普及,传统单通道ISP架构已无法满足同时驱动多颗高分辨率摄像头、并发处理视频与拍照任务的性能需求。为此,各大SoC厂商纷纷引入“双ISP”或“多通道ISP”设计,用于提升吞吐能力、降低延
- java数字签名三种方式
知了ing
javajdk
以下3钟数字签名都是基于jdk7的
1,RSA
String password="test";
// 1.初始化密钥
KeyPairGenerator keyPairGenerator = KeyPairGenerator.getInstance("RSA");
keyPairGenerator.initialize(51
- Hibernate学习笔记
caoyong
Hibernate
1>、Hibernate是数据访问层框架,是一个ORM(Object Relation Mapping)框架,作者为:Gavin King
2>、搭建Hibernate的开发环境
a>、添加jar包:
aa>、hibernatte开发包中/lib/required/所
- 设计模式之装饰器模式Decorator(结构型)
漂泊一剑客
Decorator
1. 概述
若你从事过面向对象开发,实现给一个类或对象增加行为,使用继承机制,这是所有面向对象语言的一个基本特性。如果已经存在的一个类缺少某些方法,或者须要给方法添加更多的功能(魅力),你也许会仅仅继承这个类来产生一个新类—这建立在额外的代码上。
- 读取磁盘文件txt,并输入String
一炮送你回车库
String
public static void main(String[] args) throws IOException {
String fileContent = readFileContent("d:/aaa.txt");
System.out.println(fileContent);
- js三级联动下拉框
3213213333332132
三级联动
//三级联动
省/直辖市<select id="province"></select>
市/省直辖<select id="city"></select>
县/区 <select id="area"></select>
- erlang之parse_transform编译选项的应用
616050468
parse_transform游戏服务器属性同步abstract_code
最近使用erlang重构了游戏服务器的所有代码,之前看过C++/lua写的服务器引擎代码,引擎实现了玩家属性自动同步给前端和增量更新玩家数据到数据库的功能,这也是现在很多游戏服务器的优化方向,在引擎层面去解决数据同步和数据持久化,数据发生变化了业务层不需要关心怎么去同步给前端。由于游戏过程中玩家每个业务中玩家数据更改的量其实是很少
- JAVA JSON的解析
darkranger
java
// {
// “Total”:“条数”,
// Code: 1,
//
// “PaymentItems”:[
// {
// “PaymentItemID”:”支款单ID”,
// “PaymentCode”:”支款单编号”,
// “PaymentTime”:”支款日期”,
// ”ContractNo”:”合同号”,
//
- POJ-1273-Drainage Ditches
aijuans
ACM_POJ
POJ-1273-Drainage Ditches
http://poj.org/problem?id=1273
基本的最大流,按LRJ的白书写的
#include<iostream>
#include<cstring>
#include<queue>
using namespace std;
#define INF 0x7fffffff
int ma
- 工作流Activiti5表的命名及含义
atongyeye
工作流Activiti
activiti5 - http://activiti.org/designer/update在线插件安装
activiti5一共23张表
Activiti的表都以ACT_开头。 第二部分是表示表的用途的两个字母标识。 用途也和服务的API对应。
ACT_RE_*: 'RE'表示repository。 这个前缀的表包含了流程定义和流程静态资源 (图片,规则,等等)。
A
- android的广播机制和广播的简单使用
百合不是茶
android广播机制广播的注册
Android广播机制简介 在Android中,有一些操作完成以后,会发送广播,比如说发出一条短信,或打出一个电话,如果某个程序接收了这个广播,就会做相应的处理。这个广播跟我们传统意义中的电台广播有些相似之处。之所以叫做广播,就是因为它只负责“说”而不管你“听不听”,也就是不管你接收方如何处理。另外,广播可以被不只一个应用程序所接收,当然也可能不被任何应
- Spring事务传播行为详解
bijian1013
javaspring事务传播行为
在service类前加上@Transactional,声明这个service所有方法需要事务管理。每一个业务方法开始时都会打开一个事务。
Spring默认情况下会对运行期例外(RunTimeException)进行事务回滚。这
- eidtplus operate
征客丶
eidtplus
开启列模式: Alt+C 鼠标选择 OR Alt+鼠标左键拖动
列模式替换或复制内容(多行):
右键-->格式-->填充所选内容-->选择相应操作
OR
Ctrl+Shift+V(复制多行数据,必须行数一致)
-------------------------------------------------------
- 【Kafka一】Kafka入门
bit1129
kafka
这篇文章来自Spark集成Kafka(http://bit1129.iteye.com/blog/2174765),这里把它单独取出来,作为Kafka的入门吧
下载Kafka
http://mirror.bit.edu.cn/apache/kafka/0.8.1.1/kafka_2.10-0.8.1.1.tgz
2.10表示Scala的版本,而0.8.1.1表示Kafka
- Spring 事务实现机制
BlueSkator
spring代理事务
Spring是以代理的方式实现对事务的管理。我们在Action中所使用的Service对象,其实是代理对象的实例,并不是我们所写的Service对象实例。既然是两个不同的对象,那为什么我们在Action中可以象使用Service对象一样的使用代理对象呢?为了说明问题,假设有个Service类叫AService,它的Spring事务代理类为AProxyService,AService实现了一个接口
- bootstrap源码学习与示例:bootstrap-dropdown(转帖)
BreakingBad
bootstrapdropdown
bootstrap-dropdown组件是个烂东西,我读后的整体感觉。
一个下拉开菜单的设计:
<ul class="nav pull-right">
<li id="fat-menu" class="dropdown">
- 读《研磨设计模式》-代码笔记-中介者模式-Mediator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/*
* 中介者模式(Mediator):用一个中介对象来封装一系列的对象交互。
* 中介者使各对象不需要显式地相互引用,从而使其耦合松散,而且可以独立地改变它们之间的交互。
*
* 在我看来,Mediator模式是把多个对象(
- 常用代码记录
chenjunt3
UIExcelJ#
1、单据设置某行或某字段不能修改
//i是行号,"cash"是字段名称
getBillCardPanelWrapper().getBillCardPanel().getBillModel().setCellEditable(i, "cash", false);
//取得单据表体所有项用以上语句做循环就能设置整行了
getBillC
- 搜索引擎与工作流引擎
comsci
算法工作搜索引擎网络应用
最近在公司做和搜索有关的工作,(只是简单的应用开源工具集成到自己的产品中)工作流系统的进一步设计暂时放在一边了,偶然看到谷歌的研究员吴军写的数学之美系列中的搜索引擎与图论这篇文章中的介绍,我发现这样一个关系(仅仅是猜想)
-----搜索引擎和流程引擎的基础--都是图论,至少像在我在JWFD中引擎算法中用到的是自定义的广度优先
- oracle Health Monitor
daizj
oracleHealth Monitor
About Health Monitor
Beginning with Release 11g, Oracle Database includes a framework called Health Monitor for running diagnostic checks on the database.
About Health Monitor Checks
Health M
- JSON字符串转换为对象
dieslrae
javajson
作为前言,首先是要吐槽一下公司的脑残编译部署方式,web和core分开部署本来没什么问题,但是这丫居然不把json的包作为基础包而作为web的包,导致了core端不能使用,而且我们的core是可以当web来用的(不要在意这些细节),所以在core中处理json串就是个问题.没办法,跟编译那帮人也扯不清楚,只有自己写json的解析了.
- C语言学习八结构体,综合应用,学生管理系统
dcj3sjt126com
C语言
实现功能的代码:
# include <stdio.h>
# include <malloc.h>
struct Student
{
int age;
float score;
char name[100];
};
int main(void)
{
int len;
struct Student * pArr;
int i,
- vagrant学习笔记
dcj3sjt126com
vagrant
想了解多主机是如何定义和使用的, 所以又学习了一遍vagrant
1. vagrant virtualbox 下载安装
https://www.vagrantup.com/downloads.html
https://www.virtualbox.org/wiki/Downloads
查看安装在命令行输入vagrant
2.
- 14.性能优化-优化-软件配置优化
frank1234
软件配置性能优化
1.Tomcat线程池
修改tomcat的server.xml文件:
<Connector port="8080" protocol="HTTP/1.1" connectionTimeout="20000" redirectPort="8443" maxThreads="1200" m
- 一个不错的shell 脚本教程 入门级
HarborChung
linuxshell
一个不错的shell 脚本教程 入门级
建立一个脚本 Linux中有好多中不同的shell,但是通常我们使用bash (bourne again shell) 进行shell编程,因为bash是免费的并且很容易使用。所以在本文中笔者所提供的脚本都是使用bash(但是在大多数情况下,这些脚本同样可以在 bash的大姐,bourne shell中运行)。 如同其他语言一样
- Spring4新特性——核心容器的其他改进
jinnianshilongnian
spring动态代理spring4依赖注入
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- Linux设置tomcat开机启动
liuxingguome
tomcatlinux开机自启动
执行命令sudo gedit /etc/init.d/tomcat6
然后把以下英文部分复制过去。(注意第一句#!/bin/sh如果不写,就不是一个shell文件。然后将对应的jdk和tomcat换成你自己的目录就行了。
#!/bin/bash
#
# /etc/rc.d/init.d/tomcat
# init script for tomcat precesses
- 第13章 Ajax进阶(下)
onestopweb
Ajax
index.html
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/
- Troubleshooting Crystal Reports off BW
blueoxygen
BO
http://wiki.sdn.sap.com/wiki/display/BOBJ/Troubleshooting+Crystal+Reports+off+BW#TroubleshootingCrystalReportsoffBW-TracingBOE
Quite useful, especially this part:
SAP BW connectivity
For t
- Java开发熟手该当心的11个错误
tomcat_oracle
javajvm多线程单元测试
#1、不在属性文件或XML文件中外化配置属性。比如,没有把批处理使用的线程数设置成可在属性文件中配置。你的批处理程序无论在DEV环境中,还是UAT(用户验收
测试)环境中,都可以顺畅无阻地运行,但是一旦部署在PROD 上,把它作为多线程程序处理更大的数据集时,就会抛出IOException,原因可能是JDBC驱动版本不同,也可能是#2中讨论的问题。如果线程数目 可以在属性文件中配置,那么使它成为
- 正则表达式大全
yang852220741
html编程正则表达式
今天向大家分享正则表达式大全,它可以大提高你的工作效率
正则表达式也可以被当作是一门语言,当你学习一门新的编程语言的时候,他们是一个小的子语言。初看时觉得它没有任何的意义,但是很多时候,你不得不阅读一些教程,或文章来理解这些简单的描述模式。
一、校验数字的表达式
数字:^[0-9]*$
n位的数字:^\d{n}$
至少n位的数字:^\d{n,}$
m-n位的数字:^\d{m,n}$