- 医疗AI新基建:MCP与A2A协议的破局与前瞻
Allen_Lyb
医疗高效编程研发人工智能健康医疗自动化自然语言处理数据库
一、引言1.1研究背景与动因在数字化与智能化飞速发展的时代浪潮下,医疗AI已成为全球医疗领域变革与创新的关键驱动力。从疾病的早期精准诊断,到个性化治疗方案的制定,再到远程医疗与健康管理,医疗AI正以其强大的数据处理能力、精准的模式识别能力和高效的决策辅助能力,重塑着传统医疗服务的格局。据相关数据显示,2023年中国AI医疗行业规模达973亿元,预计2028年将增至1598亿元,年复合增长率达10.
- LeetCode 力扣 第21题解题笔记
艾伦的自由之翼
leetcode链表算法
题目:将两个升序链表合并为一个新的升序链表并返回。新链表是通过拼接给定的两个链表的所有节点组成的。(1)递归解法L1.val意思是取链表L1的头结点本题可以提炼出一个字问题,假设原问题是L1和L2,并且假设L1的值更小,那么合并L1,L2,就可以做如下考虑:取出头结点L1,解决子问题:合并L1next和L2,L1的next指向子问题的结果就可以了模式识别:子问题和原问题具有相同结构,意思就是说,返
- Day 17: 常见的聚类算法
聚类算法聚类算法是一种无监督学习技术,用于将数据集中的相似对象分组到不同的类别(称为“簇”)中,而不需要预先定义的标签。其核心目标是:同一簇内的数据点尽可能相似(高内聚性),不同簇之间的数据点尽可能不同(高分离性)。聚类广泛应用于数据挖掘、模式识别、图像处理等领域,如客户细分、文档分类或异常检测。聚类算法的基本原理聚类依赖于相似度度量(如欧氏距离)来评估数据点之间的接近程度。假设数据集包含nnn个
- 【深度学习新浪潮】什么是system 1和system 2?
小米玄戒Andrew
深度学习新浪潮深度学习人工智能大模型推理模型COT模型蒸馏动态推理
在大模型研究中,System1和System2的概念源于心理学家DanielKahneman的双系统理论,用于描述人类思维的两种模式。System1代表快速、直觉、自动化的思维(如模式识别),而System2代表慢速、有意识、需要努力的逻辑推理(如复杂数学计算)。这一理论被引入AI领域后,成为理解大模型能力边界和优化方向的重要框架。一、大模型中的System1与System2的定义System1(
- 解读一个大学专业——信号与图像处理
专业定义与核心内容维度内容定义研究如何采集、处理、分析和理解一维信号(语音、雷达、脑电)和二维/三维图像(医学、遥感、工业视觉)。关键词数字信号处理(DSP)、图像处理、计算机视觉、模式识别、压缩感知、深度学习、GPU加速、嵌入式系统。技术栈MATLAB/Python+OpenCV/PyTorch+DSP/FPGA+GPU(CUDA)第五届先进算法与信号、图像处理国际学术会议(AASIP2025)
- 模式识别与机器学习课程笔记(1):数学基础
Ro Jace
学习笔记机器学习笔记人工智能
模式识别与机器学习课程笔记(1):数学基础特征矢量和特征空间随机矢量的描述随机矢量的分布函数随机矢量的数字特征随机变量、随机矢量间的统计关系随机矢量的变换正态分布正态分布的定义正态分布随机矢量的性质离散随机矢量及其分布信息论矩阵微分法基本知识矢量或矩阵对于数量变量的微分二、数量函数对于矢量的微分三、矢量函数对于矢量的微分特征矢量和特征空间特征量的类型:物理量、次序量、名义量物理量:直接反映特征的实
- 21、子图同构问题的深度解析
metal
子图同构图论算法
子图同构问题的深度解析1.子图同构问题概述子图同构问题是图论中的一个核心问题,广泛应用于社交网络分析、生物信息学、模式识别等领域。该问题的定义是:给定两个图,一个是较大的主图(HostGraph),另一个是较小的模式图(PatternGraph),判断主图中是否存在一个子图与模式图同构。简单来说,就是要找到主图中与模式图结构完全一致的子图。子图同构问题的难度在于它是一个NP完全问题,意味着在最坏情
- 支持向量回归(Support Vector Regression, SVR)详解
DuHz
回归数据挖掘人工智能信号处理算法数学建模机器学习
支持向量回归(SupportVectorRegression,SVR)详解支持向量回归(SupportVectorRegression,简称SVR)是一种基于支持向量机(SVM)的回归分析方法,广泛应用于预测和模式识别领域。SVR通过在高维空间中寻找一个最优超平面,以最大化数据点与超平面的间隔,从而实现对连续型变量的预测。本文将深入探讨SVR的理论基础、数学原理、模型构建、参数选择、训练与优化、应
- 人类的具身智能与机器的具身智能
人机与认知实验室
人类具身智能与机器具身智能的根本区别在于其基础机制和本质属性。人类具身智能是基于生物体的生理结构和神经系统的复杂交互,通过身体与环境的直接感知和体验,形成具有情感、意识和主观性的认知与行为能力。这种智能是动态的、适应性强的,并且深受个体经验、文化背景和社会互动的影响。而机器具身智能则是通过传感器、算法和数理模型来模拟与物理世界的交互,依赖于预设的规则和数据驱动的模式识别,缺乏人类的主观体验、情感和
- 大型语言模型的智能本质是什么
ZhangJiQun&MXP
教学2021论文2024大模型以及算力语言模型人工智能自然语言处理
大型语言模型的智能本质是什么基于海量数据的统计模式识别与生成系统,数据驱动的语言模拟系统,其价值在于高效处理文本任务(如写作、翻译、代码生成),而非真正的理解与创造大型语言模型(如GPT-4、Claude等)的智能本质可概括为基于海量数据的统计模式识别与生成系统,其核心能力源于对语言规律的深度学习,但缺乏真正的理解与意识。以下从本质特征、技术机制、典型案例及争议点展开分析:一、智能本质的核心特征统
- CNN 猫狗识别:从理论到实战的深度解析
爱熬夜的小古
cnn深度学习人工智能
在计算机视觉领域,卷积神经网络(ConvolutionalNeuralNetwork,CNN)凭借其强大的特征提取和模式识别能力,成为图像分类任务的主流技术。猫狗识别作为经典的图像分类问题,不仅能帮助我们理解CNN的工作原理,还能为实际应用提供技术支持。本文将深入探讨CNN在猫狗识别中的应用,从理论基础到实战代码,带你全面掌握这项技术。一、CNN基础理论概述(一)CNN的核心组件卷积层:是CNN的
- 2025年人工智能、虚拟现实与交互设计国际学术会议
学术小八
学术人工智能vr交互
重要信息官网:www.aivrid.com时间:2025年10月17-19日地点:中国-东莞部分介绍征稿主题包括但不限于:生物特征模式识别机器视觉专家系统深度学习智能搜索自动编程智能控制智能机器人系统组件虚拟现实平台用于VR/AR的AI平台数据和生成、操作、分析和验证浸入式环境和虚拟世界的生成优化和现实的渲染人工智能与用户体验个性化推荐系统情感计算与用户响应虚拟现实与沉浸式技术沉浸式环境设计交互设
- Bongo-Cat-Crew:用Python打造动态音乐猫
元楼
本文还有配套的精品资源,点击获取简介:在这个项目中,我们创建了一个将音乐、游戏和编程结合的创新体验,允许玩家通过动态猫声分类与节奏游戏OSU!互动。Python的使用使得音乐节奏识别、猫声分类逻辑和游戏接口交互成为可能。项目的核心包含了音乐节奏分析、游戏模式识别和猫声动画实现等技术要点,旨在为玩家提供独特的交互乐趣。1.Python在项目中的应用和角色1.1Python在IT行业中的普及Pytho
- 【AI与数据管理】基于AI大模型的企业元数据管理方案
暴躁小师兄数据学院
人工智能ai语言模型
基于AI大模型的元数据关键解决方案元数据(metadata)是描述数据的数据,例如数据的来源、结构、类型和质量信息。它在数据管理、分析和应用中至关重要。随着人工智能(AI)大模型(如基于Transformer的模型)的发展,这些模型凭借其强大的自然语言处理、模式识别和生成能力,为元数据处理提供了高效、自动化的解决方案。下面,我将逐步解释基于AI大模型的元数据关键解决方案,帮助您理解核心方法、挑战和
- 模糊逻辑:自然模糊性的数学处理
AI天才研究院
计算ChatGPTAI人工智能与大数据javapythonjavascriptkotlingolang架构人工智能大厂程序员硅基计算碳基计算认知计算生物计算深度学习神经网络大数据AIGCAGILLM系统架构设计软件哲学Agent程序员实现财富自由
模糊逻辑:自然模糊性的数学处理关键词:模糊逻辑、模糊集合、模糊控制器、模糊神经网络、模式识别、决策支持系统摘要:本文深入探讨了模糊逻辑这一数学工具,旨在揭示其在处理自然模糊性方面的独特优势。通过对模糊逻辑基础、应用和高级主题的详细分析,本文展示了模糊逻辑在多个领域的实际应用,包括模糊控制器、模糊神经网络、模式识别和决策支持系统等。文章结构清晰,便于读者逐步深入理解和掌握这一重要技术。目录大纲:第一
- 基于Python的气象数据分析及可视化研究
气象数据作为地球系统科学的核心要素,其分析与可视化在气候研究、灾害预警、农业生产等领域具有战略性意义。本文以Python技术栈为基座,系统探讨气象数据的采集预处理、多维度分析模型及可视化表达范式,通过3000+字深度研究揭示Pandas时序处理、Xarray多维计算、Cartopy地理可视化等工具的核心方法论。内容涵盖全球再分析数据挖掘、极端天气模式识别、动态热力图构建等实战场景,并引入机器学习预
- 量子算法:微算法科技用于定位未知哈希图的量子算法,网络安全中的哈希映射突破
MicroTech2025
量子计算哈希算法
近年来,量子计算的飞速发展使其成为各个领域的变革力量。特别是在网络安全领域,量子算法展示了加速并增强威胁检测(如恶意软件识别)方法的巨大潜力。微算法科技(NASDAQ:MLGO)用于定位未知哈希图的量子算法,是针对未知哈希图定位而设计的量子算法。这项技术可能会彻底改变在数据处理中利用哈希值的方式,特别是在恶意软件模式识别中。传统网络安全框架通常依赖哈希函数来生成不同数据结构的唯一标识符,或称之为“
- IDS检测原理和架构
hao_wujing
安全
大家读完觉得有帮助记得关注和点赞!!!IDS(入侵检测系统)的核心使命是**从海量网络/主机行为中精准识别攻击企图**,其技术本质是**异常行为模式识别引擎**。以下从检测原理、系统架构到技术演进进行深度解析:---###⚙️IDS核心检测原理####1.**双引擎协同机制**|**检测类型**|**原理**|**优势/局限**|**典型算法**||--------------------|---
- AI人工智能 神经网络
马里亚纳海沟网
人工智能神经网络深度学习笔记运维全文检索搜索引擎
**AI人工智能神经网络概述**神经网络是并行计算设备,它们试图构建大脑的计算机模型。背后的主要目标是开发一个系统来执行各种计算任务比传统系统更快。这些任务包括模式识别和分类,近似,优化和数据聚类什么是人工神经网络(ANN)人工神经网络(ANN)是一个高效的计算系统,其核心主题是借用生物神经网络的类比。人工神经网络也被称为人工神经系统,并行分布式处理系统和连接系统。ANN获取了大量以某种模式相互连
- AI表格数据分析
简单发一篇文章,最近看到AI数据分析是越来越火了哈,把简单的流程进行一次简要的分享。AI数据分析的本质,是“结构化数据→模式识别→可视化表达+洞察输出”。1、分析流程详解:(1)数据预处理什么是数据预处理呢?其实它可以理解成你给的是什么。步骤1:识别数据结构表头,字段的含义等。步骤2:清洗数据去除空值、格式错误、重复数据。步骤3:类型识别判断哪些是时间字段?哪些是数值型?哪些是分类字段?总结:类似
- 基于OpenCv的图片倾斜校正系统详细设计与具体代码实现
AI大模型应用之禅
人工智能数学基础计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
基于OpenCv的图片倾斜校正系统详细设计与具体代码实现1.背景介绍1.1图像处理的重要性在当今数字时代,图像处理技术在各个领域都扮演着重要角色。无论是在计算机视觉、模式识别、医学影像、遥感探测还是多媒体处理等领域,图像处理都是不可或缺的核心技术。通过对图像进行预处理、增强、分割、特征提取等操作,可以从图像中获取有价值的信息,为后续的分析和决策提供支持。1.2图像倾斜问题及其影响在实际应用中,由于
- 【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!
努力毕业的小土博^_^
学术会议推荐信号处理机器学习神经网络人工智能
【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模式识别、遥感测绘、光学与通信技术领域国际研讨会来袭!文章目录【EI/Scopus检索|2025光学、图像、遥感与通信融合创新大会】7月光学工程、信号处理、模
- MySQL用户留存与流失分析
Mr数据杨
全栈数据仓库mysql数据库
用户留存和流失分析是数据分析中至关重要的部分,尤其在快速发展的互联网产品和应用中,用户生命周期的变化直接关系到产品的成长与盈利。通过分析用户留存率和流失率,产品管理人员可以准确判断用户在产品使用过程中的行为倾向,从而优化用户体验、增加用户黏性、并提高商业转化率。本文将从用户生命周期的概念出发,探讨如何在MySQL中进行留存与流失的详细分析,包括流失用户的行为模式识别与预警、以及通过用户分层来设计个
- KNN算法数字识别实战:训练集、测试集与代码实现
Aurora曙光
本文还有配套的精品资源,点击获取简介:KNN算法,作为一种经典的监督学习方法,特别适用于分类和回归问题,在模式识别和数据挖掘中应用广泛。本文通过构建数字识别任务的训练集和测试集,并提供完整的代码实现,向读者展示如何使用KNN算法进行数字识别。文章详细解释了K值选择、数据预处理、距离计算、最近邻选择、类别决定以及模型评估等关键步骤,并强调了KNN在大数据集中的效率问题。1.KNN算法概述与在数字识别
- 用excel构建神经网络,excel神经网络实现
快乐的小荣荣
神经网络人工智能深度学习
NeuroSolutionsforExcel这个功能可以实现多种神经网络嘛?。神经网络是一种能适应新环境的系统,它针对过去经验(信息)的重覆学习,而具有分析、预测、推理、分类等能力,是当今能够仿效人类大脑去解决复杂问题的系统,比起常规的系统(使用统计方法、模式识别、分类、线性或非线性方法)而言,以神经网络为基础的系统具有更强大的功能和分析问题技巧,可以用来解决信号处理、仿真预测、分析决策等复杂的问
- MATLAB实现基于基元共生矩阵的纹理特征提取方法
杏花朵朵
本文还有配套的精品资源,点击获取简介:纹理特征提取在图像处理中对于模式识别和分类等应用至关重要。本文将详细介绍如何在MATLAB中使用基元共生矩阵(PCM)来提取图像的纹理特征。基元共生矩阵通过统计像素对在特定距离和方向上的相对位置关系来描述纹理的局部结构。本方法首先定义不同的方格和方向,然后计算共生矩阵,并从中提取出对比度、能量、熵、相关性等统计特征。最后,这些统计特征被组合成特征向量,用于图像
- AI学习指南高数篇-泛函分析
俞兆鹏
AI学习指南ai
AI学习指南高数篇-泛函分析概述在数学领域中,泛函分析是研究无限维向量空间及其内涵结构的分支学科。泛函分析通过研究向量空间内的连续线性泛函,解决了无限维空间上函数序列的极限性质以及函数空间的拓扑性质等问题。泛函分析在AI中的使用场景泛函分析在人工智能领域中发挥着重要作用,特别是在机器学习和深度学习领域。通过泛函分析的方法,AI系统可以更好地处理高维数据,从而更准确地进行模式识别、数据建模和预测分析
- (详细介绍)什么是 Spherical Gaussian(球形高斯分布)
音程
数学数学
文章目录什么是SphericalGaussian?几何意义:为什么叫“球形”?特点总结:应用场景举例:✅示例代码(Python)相关概念对比:SphericalGaussian(球形高斯分布)是概率论与统计学中一个非常常见且重要的概念,尤其在机器学习、信号处理、模式识别等领域有广泛应用。什么是SphericalGaussian?SphericalGaussianDistribution(球形高斯分
- 【人工智能机器学习基础篇】——深入详解无监督学习之聚类,理解K-Means、层次聚类、数据分组和分类
猿享天开
人工智能数学基础专讲机器学习人工智能无监督学习聚类
深入详解无监督学习之聚类:如K-Means、层次聚类,理解数据分组和分类无监督学习是机器学习中的一个重要分支,旨在从未标注的数据中发现潜在的结构和模式。聚类(Clustering)作为无监督学习的核心任务之一,广泛应用于数据分组、模式识别和数据压缩等领域。本文将深入探讨两种常用的聚类算法:K-Means聚类和层次聚类,并详细解释它们在数据分组和分类中的应用。目录深入详解无监督学习之聚类:如K-Me
- 数据挖掘在大数据领域的重要性及价值
AI天才研究院
计算AIAgent应用开发数据挖掘大数据人工智能ai
数据挖掘在大数据领域的重要性及价值关键词:数据挖掘、大数据分析、机器学习、商业智能、数据预处理、预测分析、数据价值提取摘要:本文系统解析数据挖掘在大数据时代的核心地位,通过技术原理、算法实现、行业应用等维度,揭示其如何从海量数据中萃取有效信息。结合CRISP-DM方法论、典型算法案例及实战项目,阐述数据挖掘在数据预处理、模式识别、预测建模等关键环节的技术价值,同时分析金融、医疗、电商等行业的落地场
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep