Deep Learning初学材料汇总

最近打算系统的学习下deep learning。总结了下经典的入门材料:

1. 文章Survey:参见   http://deeplearning.net/reading-list/

  •  Representation Learning: A Review and New Perspectives, Yoshua Bengio, Aaron Courville, Pascal Vincent, Arxiv, 2012.
  • The monograph or review paper Learning Deep Architectures for AI (Foundations & Trends in Machine Learning, 2009).
  • Deep Machine Learning – A New Frontier in Artificial Intelligence Research – a survey paper by Itamar Arel, Derek C. Rose, and Thomas P. Karnowski.
  • Graves, A. (2012). Supervised sequence labelling with recurrent neural networks(Vol. 385). Springer.
  • Schmidhuber, J. (2014). Deep Learning in Neural Networks: An Overview. 75 pages, 850+ references, http://arxiv.org/abs/1404.7828, PDF & LATEX source & complete public BIBTEX file under http://www.idsia.ch/~juergen/deep-learning-overview.html.

2. 最近学术界的研究进展(cvpr 2014 tutorial)

https://sites.google.com/site/deeplearningcvpr2014/, 阅读了部分材料, 这里面的介绍比较系统和前沿,读起来也不太难理解,有空详细阅读下reference。

3. 视频介绍入门:

    hinton 在coursera的neutral network

    Hugo 的视频https://www.youtube.com/playlist?list=PL6Xpj9I5qXYEcOhn7TqghAJ6NAPrNmUBH

4. tools:

    https://github.com/torch, 工业界用的多,用lua,速度快,容易嵌入c,

    http://deeplearning.net/software/pylearn2/, python易编程。

    比较: http://arxiv.org/pdf/1308.4214.pdf

5. 入门教程:http://ufldl.stanford.edu/wiki/index.php, 很赞, Ng的教程特别容易理解。


你可能感兴趣的:(Deep Learning初学材料汇总)