plt.plot(x, color='y'); plt.plot(x+1, color='m'); plt.plot(x+2, color='c');
plt.plot(y, 'y', y+1, 'm', y+2, 'c');#与上等价
plt.plot(x, color='y',linestyle='--'); plt.plot(x+1, color='m',linestyle='-'); plt.plot(x+2, color='c',linestyle=':');
plt.plot(x, 'yh--');#此处设置了颜色,线格式和标记点格式 plt.plot(x+1, 'm^--'); plt.plot(x+2, 'co--');
也可以使用参数指定样式
locs, labels = plt.xticks()#xtickers反映了位置和标签
import matplotlib.pyplot as plt x = [5, 3, 7, 2, 4, 1] plt.plot(x); plt.xticks(range(len(x)), ['a', 'b', 'c', 'd', 'e', 'f']);#设置x轴的位置和表现形式 plt.yticks(range(1, 8, 2)); plt.show()
y = np.random.randn(1000)#生成1000个服从高斯分布的随机数 plt.hist(y,bins=25)#绘出器柱状图,bins:柱子的个数 plt.show()
x = np.arange(0, 4, 0.2) y = np.exp(-x) e1 = 0.1 * np.abs(np.random.randn(len(y))) #fmt图样式,elinewidth,错误bar的宽度,ecolor,errorbar的颜色,capsize,errorbar的宽度 plt.errorbar(x, y, yerr=e1, fmt='.--',elinewidth=2); plt.show()#xerr=e2来指定x错误范围,yerr默认为-e1~e1,可以yerr=[e1,e2]来指定范围
plt.bar([1, 2, 3], [3, 2, 5],bottom=2)#width:bar的宽度,bottom:y轴的基数,color:颜色 plt.show()
dict = {'A': 40, 'B': 70, 'C': 30, 'D': 85}
for i, key in enumerate(dict):
plt.bar(i, dict[key])#单个添加
plt.xticks(np.arange(len(dict))+0.4, dict.keys());#x轴的表现形式
plt.yticks(dict.values())
plt.show()
data1 = 10*np.random.rand(5)#显示三类bar data2 = 10*np.random.rand(5) data3 = 10*np.random.rand(5) e2 = 0.5 * np.abs(np.random.randn(len(data2))) locs = np.arange(1, len(data1)+1) width = 0.27 plt.bar(locs, data1, width=width); plt.bar(locs+width, data2, yerr=e2, width=width,color='red') plt.bar(locs+2*width, data3, width=width, color='green') plt.xticks(locs + width*1.5, locs) plt.show()
plt.figure(figsize=(6,6))#图形的长、宽 x = [45, 35, 20] labels = ['Cats', 'Dogs', 'Fishes'] plt.pie(x, labels=labels) plt.show()
plt.figure(figsize=(8,6)) x = [4, 9, 21, 55, 30, 18] labels = ['Swiss','Austria','Spain','Italy','France','Benelux'] explode = [0, 0.1, 0, 0, 0.1, 0] plt.pie(x, labels=labels, explode=explode, autopct='%1.3f%%')#autopct,占比数值格式,explode,图离远点距离 plt.show()
x = np.random.randn(1000) y = np.random.randn(1000) size = 50*np.random.randn(1000) colors = np.random.rand(1000) plt.scatter(x, y, s=size, c=colors)#s点大小,c为颜色,marker点形状 plt.show()
x = np.arange(0, 2*np.pi, .01) y = np.sin(x) plt.plot(x, y) plt.text(0.1, -0.04, 'sin(0)=0');#在指定位置添加文本 plt.show()
y = [13,11,13,12,13,10,30,12,11,13,12,12,12,11,12]
plt.plot(y);
plt.ylim(ymax=35);
#添加annotation,width:arrow的宽度
#frac:箭头占真个长度的占比,headwidth:箭头的宽度,shrink:离标注点的距离
plt.annotate('this spot must really\nmean something', \ xy=(6, 30), xytext=(8, 31.5), \
arrowprops=dict(facecolor='black', shrink=0.05))
plt.show()
plt.axis([0, 10, 0, 20]) arrstyles = ['-','->','-[','<-','<->',\ 'fancy','simple','wedge'] for i, style in enumerate(arrstyles): plt.annotate(style, xytext=(1, 2+2*i), \ xy=(4, 1+2*i), arrowprops=dict(arrowstyle=style)); plt.show()