- 漏检率骤升20%的安防困局:陌讯动态剪枝技术如何破局
2501_92473199
人工智能机器学习算法目标检测计算机视觉视觉检测
1.开篇痛点:安防监控的夜间困局传统目标检测算法在复杂安防场景中面临三重挑战:光照敏感:低光环境下行人检测mAP暴跌至65%以下,夜间误报率高达40%目标遮挡:密集场景(如校园周界)漏检率超25%,某园区因货柜遮挡漏检损失超万元/次算力瓶颈:边缘设备(如JetsonXavier)运行YOLOv5仅12FPS,响应延迟>200ms某安防厂商反馈:40%误报率迫使每2小时人工复核,运维成本激增37%2
- 全景图拼接和视频行人检测(Python + opencv)
weixin-Vip1104z
程序员opencv音视频python
3.根据关键点特征和描述符,对两张图像进行匹配,得到若干匹配点对,并移除错误匹配4.使用Ransac算法和匹配的特征来估计单应矩阵(homographymatrix)5.通过单应矩阵来对图像进行仿射变换6.两图像拼接,重叠部分融合7.裁剪以获得美观的最终图像本次实验通过拍摄多组不同的图片来实现图像的拼接.#参考自https://cloud.tencent.com/developer/article
- 目标检测的图像特征提取
勇往直前的流浪刀客
CV图像特征提取
目标检测的图像特征提取之(一)HOG特征1、HOG特征:方向梯度直方图(HistogramofOrientedGradient,HOG)特征是一种在计算机视觉和图像处理中用来进行物体检测的特征描述子。它通过计算和统计图像局部区域的梯度方向直方图来构成特征。Hog特征结合SVM分类器已经被广泛应用于图像识别中,尤其在行人检测中获得了极大的成功。需要提醒的是,HOG+SVM进行行人检测的方法是法国研究
- 基于HOG+SVM的行人检测算法实现与PCL
BsCplusplus
算法支持向量机机器学习
行人检测是计算机视觉领域的一个重要任务,其在许多应用中具有广泛的应用,如智能监控、自动驾驶等。本文将介绍如何使用HOG(HistogramofOrientedGradients,梯度方向直方图)特征与支持向量机(SVM)分类器实现行人检测,并结合PCL(PointCloudLibrary)库进行点云数据的处理。HOG特征描述子是一种基于局部梯度方向的特征表示方法,它通过提取图像中的局部梯度信息来描
- Shell Script 编程笔记
huangpg丶
SupportingTechnology
考虑下面两个场景:场景一:我们在训练深度网络模型过程中保存了10个不同epoch模型。我们希望通过测试集验证每个模型的性能。每次对模型进行测试集验证需要30分钟,对于原始的操作方式,每次验证需要在终端手动输入一条指令,等待30分钟后程序运行结束,然后复制窗口输出的模型性能信息手动保存。再输入指令测试下一个模型,再进行等待......场景二:现在有一个任务需要进行视频内的行人检测和行人重识别,如果我
- 行人检测系统:基于YOLOv5的行人检测与UI界面实现
深度学习&目标检测实战项目
YOLOuipython开发语言深度学习视觉检测计算机视觉
1.引言行人检测(PedestrianDetection)是计算机视觉中的一个重要任务,广泛应用于自动驾驶、智能安防、交通监控等领域。行人检测的目标是从图像或视频中检测出行人的位置,并标出其在图像中的边界框。随着深度学习技术的快速发展,YOLO(YouOnlyLookOnce)系列模型在目标检测任务中表现出了极高的准确性和速度,成为了行人检测的常用工具。本文将详细介绍如何使用YOLOv5实现行人检
- 基于深度学习的行人检测与识别系统:YOLOv5、YOLOv8、YOLOv10与UI界面的实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
引言行人检测与识别技术作为计算机视觉领域的一个重要应用,广泛应用于智能监控、自动驾驶、公共安全等多个领域。行人检测系统的目标是通过图像或视频中的内容,自动识别并定位行人,这项任务在复杂环境中面临着不同的挑战,如多样的行人姿态、遮挡、光照变化等。近年来,深度学习的进步,尤其是目标检测领域的快速发展,为行人检测提供了强有力的支持。YOLO(YouOnlyLookOnce)系列模型,作为目前目标检测领域
- 基于深度学习的行人检测识别系统:YOLOv8 + UI界面 + 数据集完整实现
2025年数学建模美赛
深度学习YOLOui人工智能分类
1.引言行人检测与识别是计算机视觉中的一个重要领域,广泛应用于安防监控、智能交通、自动驾驶等多个领域。传统的行人检测方法面临着许多挑战,如低光照、复杂背景、遮挡等问题。随着深度学习技术的迅猛发展,基于卷积神经网络(CNN)的方法,尤其是YOLO(YouOnlyLookOnce)系列算法,在行人检测中取得了显著的效果。YOLOv8作为YOLO系列的最新版本,继承了YOLO一贯的高效性和准确性,在速度
- 基于STM32开发的智能交通灯控制系统
STM32发烧友
stm32嵌入式硬件单片机
目录引言环境准备工作硬件准备软件安装与配置系统设计系统架构硬件连接代码实现系统初始化红绿灯控制逻辑车辆与行人检测信号灯控制与调度OLED显示与状态提示Wi-Fi通信与远程监控应用场景城市交通管理智能交通系统的研发与测试常见问题及解决方案常见问题解决方案结论1.引言随着城市化的加速,交通管理成为现代城市中亟待解决的问题。智能交通灯控制系统通过实时检测交通状况,根据实际车流量调整信号灯的切换时间,提高
- 交通领域当中的视觉识别算法
若木胡
交通数据探索算法
以下是一些交通领域中常见的视觉识别算法:目标检测算法YOLO系列:YouOnlyLookOnce(YOLO)算法以其快速高效的特点在交通领域得到广泛应用。它能够在一张图像中同时检测多个目标,并快速确定目标的位置和类别。例如,在车辆检测中,可以准确识别出道路上不同类型的车辆,如轿车、卡车、公交车等;在行人检测方面,能够实时检测出行人的位置和姿态,为自动驾驶车辆或交通监控系统提供重要信息。YOLOv3
- 毕设分享 深度学习街道行人流量计数系统
fawubio_A
毕业设计python毕设
文章目录0前言1项目运行效果2设计概要2原理介绍2.1目标检测概况什么是目标检测?发展阶段2.2行人检测行人检测简介行人检测技术难点行人检测实现效果4最后0前言这两年开始毕业设计和毕业答辩的要求和难度不断提升,传统的毕设题目缺少创新和亮点,往往达不到毕业答辩的要求,这两年不断有学弟学妹告诉学长自己做的项目系统达不到老师的要求。为了大家能够顺利以及最少的精力通过毕设,学长分享优质毕业设计项目,今天要
- 【深度学习实战】行人检测追踪与双向流量计数系统【python源码+Pyqt5界面+数据集+训练代码】YOLOv8、ByteTrack、目标追踪、双向计数、行人检测追踪、过线计数
阿_旭
AI应用软件开发实战深度学习实战深度学习python行人检测行人追踪过线计数
《博主简介》小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。✌更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~感谢小伙伴们点赞、关注!《------往期经典推荐------》一、AI应用软件开发实战专栏【链接】项目名称项目名称1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】3.【手势识别系统开发】4.【人脸面部活体
- 【计算机视觉前沿研究 热点 顶会】ECCV 2024中目标检测有关的论文
平安顺遂事事如意
顶刊顶会论文合集计算机视觉目标检测人工智能3d目标跟踪
整值训练和尖峰驱动推理脉冲神经网络用于高性能和节能的目标检测与人工神经网络(ANN)相比,脑激励的脉冲神经网络(SNN)具有生物合理性和低功耗的优势。由于SNN的性能较差,目前的应用仅限于简单的分类任务。在这项工作中,我们专注于弥合人工神经网络和神经网络在目标检测方面的性能差距。我们的设计围绕着网络架构和尖峰神经元。当行人检测遇到多模态学习时:通才模型和基准数据集近年来,利用不同传感器模态(如RG
- 【CV论文精读】Adaptive Fusion of Multi-Scale YOLO for Pedestrian Detection基于多尺度自适应融合YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO计算机视觉人工智能
AdaptiveFusionofMulti-ScaleYOLOforPedestrianDetection0.论文摘要和作者信息摘要虽然行人检测技术在不断改进,但由于不同规模的行人和遮挡行人模式的不确定性和多样性,行人检测仍然具有挑战性。本研究遵循单次目标检测的通用框架,提出了一种分而治之的方法来解决上述问题。该模型引入了一个分割函数,可以将一幅图像中没有重叠的行人分割成两个子图像。通过使用网络架
- HOG特征
ce0b74704937
HOG特征是在文章《HistogramsofOrientedGradientsforHumanDetection》中提出,看文章标题可知,该文章是为了行人检测提出的,不过后来也用于其它方向,比如特征点检测等。该文中行人检测大概分为以下几步:输入图像(行人的图像)采用Gamma矫正法对输入图像进行颜色空间的标准化;目的是调节图像的对比度,降低图像局部的阴影和光照所造成的影响,同时可以抑制噪声。(原文
- 【CV论文精读】Pedestrian Detection Based on YOLO Network Model 基于YOLO的行人检测
量子-Alex
CV知识学习和论文阅读YOLO深度学习计算机视觉
【CV论文精读】PedestrianDetectionBasedonYOLONetworkModel0.论文摘要和作者信息摘要——经过深度网络后,会有一些行人信息的丢失,会造成梯度的消失,造成行人检测不准确。本文改进了YOLO算法的网络结构,提出了一种新的网络结构YOLO-R。首先,在原有YOLO网络的基础上增加了三个直通层。直通层由路由层和重组层组成。其作用是将浅层行人特征连接到深层行人特征,并
- 跨模态行人重识别综述 - 计算机视觉
小小猿D
笔记深度学习
跨模态行人重识别综述-计算机视觉0引言近年来,随着智能监控领域的不断发展,单纯凭借传统的人力已经很难在对复杂的监控场景做出完善详尽的处理。作为一项在大型非重叠视角多摄像机网络获取到的海量视频画面序列里找到目标行人的任务,行人重识别(PersonRe-Identification)可以被看作是多摄像头的行人检索问题。它建立在行人检测的基础之上,捕捉获取同一目标个体在不同非重叠摄像头中分布位置信息,推
- PaddleDetection学习2——使用Paddle-Lite在 Android 上实现行人检测
waf13916
paddleandroid
使用Paddle-Lite在Android上实现行人检测1.环境准备2.准备模型2.1下载模型2.2模型优化3.部署模型3.1目标检测C++代码Pipeline.hPipeline.cpppreprocess_op.hpreprocess_op.cc3.2修改配置文件3.4部署模型到移动端1.环境准备参考前一篇
- (Re-ID论文精读3)WACV2023 | Body Part-Based Representation Learning for Occluded PersonRe-Identificatio
达柳斯·绍达华·宁
目标跟踪视觉检测深度学习
最近对Re-ID比较感兴趣,读了一篇关于Re-ID的文章,作为自己学习的一个记录,有说的不正确的地方欢迎大家指正,也希望大家一起共同学习共同进步!!!作为系列的第三篇文章,读下来深刻感觉一句话的含金量:不积跬步无以至千里不积小流无以成江海!!借此勉励自己,坚持把这个系列做下去。原文地址:https://openaccess.thecvf.com/content/WACV2023/papers/So
- YOLOV5s行人识别改进 引入CoT模块及SIOU损失函数
deleteeee
YOLO人工智能计算机视觉神经网络python目标检测视觉检测
1.项目背景及意义近年来,深度学习算法不断取得了突破性进展,这也推动了人工智能技术的不断进步。机器视觉作为其中的重要一环,在不同领域也焕发出了强烈的生机。行人目标检测是机器视觉的一项重要课题,早就已经引起了国内外学者广泛的研究。在现实生活中,行人检测在车站、商场等场所的人流量检测、汽车的自动驾驶技术、智能交通、健身房辅助教学、电影拍摄中动作捕捉等多种场景中被广泛应用。然而,行人检测通常伴随着遮挡,
- 计算机设计大赛 交通目标检测-行人车辆检测流量计数 - 计算机设计大赛
iuerfee
python
文章目录0前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后0前言优质竞赛项目系列,今天要分享的是毕业设计交通目标检测-行人车辆检测流量计数该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!学长这里给一个题目综合评分(每项满分5分)难度系数:3分工作量:3分创新点:4分更多资料,项目分
- YOLOV5单目测距+车辆检测+车道线检测+行人检测(教程-代码)
毕设阿力
YOLO目标跟踪人工智能目标检测
YOLOv5是一种高效的目标检测算法,结合其在单目测距、车辆检测、车道线检测和行人检测等领域的应用,可以实现多个重要任务的精确识别和定位。首先,YOLOv5可以用于单目测距。通过分析图像中的目标位置和尺寸信息,结合相机参数和几何关系,可以推断出目标与相机之间的距离。这对于智能驾驶、机器人导航等领域至关重要,可以帮助车辆或机器人感知周围环境的远近,并做出相应的决策。其次,YOLOv5可以用于车辆检测
- 大创项目推荐 目标检测-行人车辆检测流量计数
laafeer
python
文章目录前言1\.目标检测概况1.1什么是目标检测?1.2发展阶段2\.行人检测2.1行人检测简介2.2行人检测技术难点2.3行人检测实现效果2.4关键代码-训练过程最后前言优质竞赛项目系列,今天要分享的是行人车辆目标检测计数系统该项目较为新颖,适合作为竞赛课题方向,学长非常推荐!更多资料,项目分享:https://gitee.com/dancheng-senior/postgraduate1.目
- 使用飞浆训练目标检测模型
无忧秘书智脑
深度学习机器学习人工智能
参考链接:PP-PicoDet算法训练行人检测模型-CSDN博客文章浏览阅读306次。PP-PicoDet模型特点:方案选择PP-PicoDet轻量化模型,主要看中PP-PicoDet体积小、速度快、精度较高的优势,非常适合本项目的部署环境和性能要求。同时,飞桨提供的预训练模型也可以最大程度上提升模型的收敛速度和精度。https://blog.csdn.net/qq_45437316/articl
- LNTON人形检测、行人检测工具,支持图片、RTSP实时流、mp4文件中的行人或者人形检测,实用工具,亲测可用!
xiejiashu
视频人工智能行人检测人形检测人物监测检测人的算法羚通算法
简介LNTON_PID是一个行人检测工具,能够对图像、视频、文件夹中的多个文件或RTSP实时流进行行人检测,并支持自定义输出结果和行人区域位置的保存。该工具提供了灵活的参数配置选项以适应各种应用场景。快速开始-命令行参数格式(Linux/Unix环境)./pid_tools_gensamplesINPUT_PATHOUT_RESULT_DIR[DEFAULT:results]OUT_PATCH_D
- 智慧工地下烟火检测报警系统 建筑工地火灾监控系统
豌豆云
烟火自动识别预警和监管系统
智慧工地下烟火检测报警系统建筑工地火灾监控系统基于智能识别的人员密集场所安防预警系统或许能够帮到你。该系统利用监控系统结合模式识别,对现场视频数据进行深度挖掘,突破基于复杂背景下的烟火识别、动态场景下非配合人脸识别以及基于行人检测的越界识别等关键技术。烟感防灾报警系统,在施工现场加工区、材料堆放区、易发生火灾隐患区域安装烟感探测器,监测现场烟雾浓度。探测器内置芯片可实时上传监测数据至“智慧工地监管
- 目标检测数据集 - 人脸检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO人脸检测人脸检测数据集深度学习人工智能数据集
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 目标检测数据集 - 行人检测数据集下载「包含VOC、COCO、YOLO三种格式」
极智视界
AI训练数据集工作室目标检测YOLO行人检测行人检测数据集AI训练数据集深度学习labelimg
数据集介绍:行人检测数据集,真实场景高质量图片数据,涉及场景丰富,比如校园行人、街景行人、道路行人、遮挡行人、严重遮挡行人数据;适用实际项目应用:公共场所监控场景下行人检测项目,以及作为监控场景通用行人检测数据集场景数据的补充;标注说明:采用labelimg标注软件进行标注,标注质量高,提供VOC(xml)、COCO(json)、YOLO(txt)三种常见目标检测数据集格式,可以直接用于如YOLO
- 基于YOLOv5的行人检测系统
TechMasterPlus
深度学习#目标检测游戏音视频深度学习人工智能
若需要完整工程源代码,请私信作者目标检测在计算机视觉领域中的重要性,特别是在人群流量监测方面的应用。其中,YOLO(YouOnlyLookOnce)系列算法在目标检测领域取得了显著的进展,从YOLO到YOLOv5的发展历程表明其在算法性能上的不断优化。文中提到了基于YOLOv5设计的人口密度检测系统,该系统通过深度学习算法对人群进行检测和计数,主要应用于商场、路口等需要控制人流的场所。系统通过YO
- 无人驾驶卡尔曼滤波
meteor,across T sky
Apollo机器学习人工智能
无人驾驶卡尔曼滤波(行人检测)xk=axk−1+wkx_k=ax_{k-1}+w_kxk=axk−1+wkwkw_kwk:过程噪声状态估计估计飞行器状态(高度)xk=zk−vkx_k=z_k-v_kxk=zk−vk卡尔曼滤波通过同时考虑上一状态值和当前的测量值来获得对当前状态值的估计,对状态xxx的估计:x^\hat{x}x^x^k=x^k−1+gk(zk−x^k−1)\hat{x}_k=\hat
- 枚举的构造函数中抛出异常会怎样
bylijinnan
javaenum单例
首先从使用enum实现单例说起。
为什么要用enum来实现单例?
这篇文章(
http://javarevisited.blogspot.sg/2012/07/why-enum-singleton-are-better-in-java.html)阐述了三个理由:
1.enum单例简单、容易,只需几行代码:
public enum Singleton {
INSTANCE;
- CMake 教程
aigo
C++
转自:http://xiang.lf.blog.163.com/blog/static/127733322201481114456136/
CMake是一个跨平台的程序构建工具,比如起自己编写Makefile方便很多。
介绍:http://baike.baidu.com/view/1126160.htm
本文件不介绍CMake的基本语法,下面是篇不错的入门教程:
http:
- cvc-complex-type.2.3: Element 'beans' cannot have character
Cb123456
springWebgis
cvc-complex-type.2.3: Element 'beans' cannot have character
Line 33 in XML document from ServletContext resource [/WEB-INF/backend-servlet.xml] is i
- jquery实例:随页面滚动条滚动而自动加载内容
120153216
jquery
<script language="javascript">
$(function (){
var i = 4;$(window).bind("scroll", function (event){
//滚动条到网页头部的 高度,兼容ie,ff,chrome
var top = document.documentElement.s
- 将数据库中的数据转换成dbs文件
何必如此
sqldbs
旗正规则引擎通过数据库配置器(DataBuilder)来管理数据库,无论是Oracle,还是其他主流的数据都支持,操作方式是一样的。旗正规则引擎的数据库配置器是用于编辑数据库结构信息以及管理数据库表数据,并且可以执行SQL 语句,主要功能如下。
1)数据库生成表结构信息:
主要生成数据库配置文件(.conf文
- 在IBATIS中配置SQL语句的IN方式
357029540
ibatis
在使用IBATIS进行SQL语句配置查询时,我们一定会遇到通过IN查询的地方,在使用IN查询时我们可以有两种方式进行配置参数:String和List。具体使用方式如下:
1.String:定义一个String的参数userIds,把这个参数传入IBATIS的sql配置文件,sql语句就可以这样写:
<select id="getForms" param
- Spring3 MVC 笔记(一)
7454103
springmvcbeanRESTJSF
自从 MVC 这个概念提出来之后 struts1.X struts2.X jsf 。。。。。
这个view 层的技术一个接一个! 都用过!不敢说哪个绝对的强悍!
要看业务,和整体的设计!
最近公司要求开发个新系统!
- Timer与Spring Quartz 定时执行程序
darkranger
springbean工作quartz
有时候需要定时触发某一项任务。其实在jdk1.3,java sdk就通过java.util.Timer提供相应的功能。一个简单的例子说明如何使用,很简单: 1、第一步,我们需要建立一项任务,我们的任务需要继承java.util.TimerTask package com.test; import java.text.SimpleDateFormat; import java.util.Date;
- 大端小端转换,le32_to_cpu 和cpu_to_le32
aijuans
C语言相关
大端小端转换,le32_to_cpu 和cpu_to_le32 字节序
http://oss.org.cn/kernel-book/ldd3/ch11s04.html
小心不要假设字节序. PC 存储多字节值是低字节为先(小端为先, 因此是小端), 一些高级的平台以另一种方式(大端)
- Nginx负载均衡配置实例详解
avords
[导读] 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。负载均衡先来简单了解一下什么是负载均衡,单从字面上的意思来理解就可以解 负载均衡是我们大流量网站要做的一个东西,下面我来给大家介绍在Nginx服务器上进行负载均衡配置方法,希望对有需要的同学有所帮助哦。
负载均衡
先来简单了解一下什么是负载均衡
- 乱说的
houxinyou
框架敏捷开发软件测试
从很久以前,大家就研究框架,开发方法,软件工程,好多!反正我是搞不明白!
这两天看好多人研究敏捷模型,瀑布模型!也没太搞明白.
不过感觉和程序开发语言差不多,
瀑布就是顺序,敏捷就是循环.
瀑布就是需求、分析、设计、编码、测试一步一步走下来。而敏捷就是按摸块或者说迭代做个循环,第个循环中也一样是需求、分析、设计、编码、测试一步一步走下来。
也可以把软件开发理
- 欣赏的价值——一个小故事
bijian1013
有效辅导欣赏欣赏的价值
第一次参加家长会,幼儿园的老师说:"您的儿子有多动症,在板凳上连三分钟都坐不了,你最好带他去医院看一看。" 回家的路上,儿子问她老师都说了些什么,她鼻子一酸,差点流下泪来。因为全班30位小朋友,惟有他表现最差;惟有对他,老师表现出不屑,然而她还在告诉她的儿子:"老师表扬你了,说宝宝原来在板凳上坐不了一分钟,现在能坐三分钟。其他妈妈都非常羡慕妈妈,因为全班只有宝宝
- 包冲突问题的解决方法
bingyingao
eclipsemavenexclusions包冲突
包冲突是开发过程中很常见的问题:
其表现有:
1.明明在eclipse中能够索引到某个类,运行时却报出找不到类。
2.明明在eclipse中能够索引到某个类的方法,运行时却报出找不到方法。
3.类及方法都有,以正确编译成了.class文件,在本机跑的好好的,发到测试或者正式环境就
抛如下异常:
java.lang.NoClassDefFoundError: Could not in
- 【Spark七十五】Spark Streaming整合Flume-NG三之接入log4j
bit1129
Stream
先来一段废话:
实际工作中,业务系统的日志基本上是使用Log4j写入到日志文件中的,问题的关键之处在于业务日志的格式混乱,这给对日志文件中的日志进行统计分析带来了极大的困难,或者说,基本上无法进行分析,每个人写日志的习惯不同,导致日志行的格式五花八门,最后只能通过grep来查找特定的关键词缩小范围,但是在集群环境下,每个机器去grep一遍,分析一遍,这个效率如何可想之二,大好光阴都浪费在这上面了
- sudoku solver in Haskell
bookjovi
sudokuhaskell
这几天没太多的事做,想着用函数式语言来写点实用的程序,像fib和prime之类的就不想提了(就一行代码的事),写什么程序呢?在网上闲逛时发现sudoku游戏,sudoku十几年前就知道了,学生生涯时也想过用C/Java来实现个智能求解,但到最后往往没写成,主要是用C/Java写的话会很麻烦。
现在写程序,本人总是有一种思维惯性,总是想把程序写的更紧凑,更精致,代码行数最少,所以现
- java apache ftpClient
bro_feng
java
最近使用apache的ftpclient插件实现ftp下载,遇见几个问题,做如下总结。
1. 上传阻塞,一连串的上传,其中一个就阻塞了,或是用storeFile上传时返回false。查了点资料,说是FTP有主动模式和被动模式。将传出模式修改为被动模式ftp.enterLocalPassiveMode();然后就好了。
看了网上相关介绍,对主动模式和被动模式区别还是比较的模糊,不太了解被动模
- 读《研磨设计模式》-代码笔记-工厂方法模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
package design.pattern;
/*
* 工厂方法模式:使一个类的实例化延迟到子类
* 某次,我在工作不知不觉中就用到了工厂方法模式(称为模板方法模式更恰当。2012-10-29):
* 有很多不同的产品,它
- 面试记录语
chenyu19891124
招聘
或许真的在一个平台上成长成什么样,都必须靠自己去努力。有了好的平台让自己展示,就该好好努力。今天是自己单独一次去面试别人,感觉有点小紧张,说话有点打结。在面试完后写面试情况表,下笔真的好难,尤其是要对面试人的情况说明真的好难。
今天面试的是自己同事的同事,现在的这个同事要离职了,介绍了我现在这位同事以前的同事来面试。今天这位求职者面试的是配置管理,期初看了简历觉得应该很适合做配置管理,但是今天面
- Fire Workflow 1.0正式版终于发布了
comsci
工作workflowGoogle
Fire Workflow 是国内另外一款开源工作流,作者是著名的非也同志,哈哈....
官方网站是 http://www.fireflow.org
经过大家努力,Fire Workflow 1.0正式版终于发布了
正式版主要变化:
1、增加IWorkItem.jumpToEx(...)方法,取消了当前环节和目标环节必须在同一条执行线的限制,使得自由流更加自由
2、增加IT
- Python向脚本传参
daizj
python脚本传参
如果想对python脚本传参数,python中对应的argc, argv(c语言的命令行参数)是什么呢?
需要模块:sys
参数个数:len(sys.argv)
脚本名: sys.argv[0]
参数1: sys.argv[1]
参数2: sys.argv[
- 管理用户分组的命令gpasswd
dongwei_6688
passwd
NAME: gpasswd - administer the /etc/group file
SYNOPSIS:
gpasswd group
gpasswd -a user group
gpasswd -d user group
gpasswd -R group
gpasswd -r group
gpasswd [-A user,...] [-M user,...] g
- 郝斌老师数据结构课程笔记
dcj3sjt126com
数据结构与算法
<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<<
- yii2 cgridview加上选择框进行操作
dcj3sjt126com
GridView
页面代码
<?=Html::beginForm(['controller/bulk'],'post');?>
<?=Html::dropDownList('action','',[''=>'Mark selected as: ','c'=>'Confirmed','nc'=>'No Confirmed'],['class'=>'dropdown',])
- linux mysql
fypop
linux
enquiry mysql version in centos linux
yum list installed | grep mysql
yum -y remove mysql-libs.x86_64
enquiry mysql version in yum repositoryyum list | grep mysql oryum -y list mysql*
install mysq
- Scramble String
hcx2013
String
Given a string s1, we may represent it as a binary tree by partitioning it to two non-empty substrings recursively.
Below is one possible representation of s1 = "great":
- 跟我学Shiro目录贴
jinnianshilongnian
跟我学shiro
历经三个月左右时间,《跟我学Shiro》系列教程已经完结,暂时没有需要补充的内容,因此生成PDF版供大家下载。最近项目比较紧,没有时间解答一些疑问,暂时无法回复一些问题,很抱歉,不过可以加群(334194438/348194195)一起讨论问题。
----广告-----------------------------------------------------
- nginx日志切割并使用flume-ng收集日志
liyonghui160com
nginx的日志文件没有rotate功能。如果你不处理,日志文件将变得越来越大,还好我们可以写一个nginx日志切割脚本来自动切割日志文件。第一步就是重命名日志文件,不用担心重命名后nginx找不到日志文件而丢失日志。在你未重新打开原名字的日志文件前,nginx还是会向你重命名的文件写日志,linux是靠文件描述符而不是文件名定位文件。第二步向nginx主
- Oracle死锁解决方法
pda158
oracle
select p.spid,c.object_name,b.session_id,b.oracle_username,b.os_user_name from v$process p,v$session a, v$locked_object b,all_objects c where p.addr=a.paddr and a.process=b.process and c.object_id=b.
- java之List排序
shiguanghui
list排序
在Java Collection Framework中定义的List实现有Vector,ArrayList和LinkedList。这些集合提供了对对象组的索引访问。他们提供了元素的添加与删除支持。然而,它们并没有内置的元素排序支持。 你能够使用java.util.Collections类中的sort()方法对List元素进行排序。你既可以给方法传递
- servlet单例多线程
utopialxw
单例多线程servlet
转自http://www.cnblogs.com/yjhrem/articles/3160864.html
和 http://blog.chinaunix.net/uid-7374279-id-3687149.html
Servlet 单例多线程
Servlet如何处理多个请求访问?Servlet容器默认是采用单实例多线程的方式处理多个请求的:1.当web服务器启动的