- AI模型训练中过拟合和欠拟合的区别是什么?
workflower
人工智能算法人工智能数据分析
在AI模型训练中,过拟合和欠拟合是两种常见的模型性能问题,核心区别在于模型对数据的学习程度和泛化能力:欠拟合(Underfitting)-定义:模型未能充分学习到数据中的规律,对训练数据的拟合程度较差,在训练集和测试集上的表现都不好(如准确率低、损失值高)。-原因:-模型结构过于简单(如用线性模型解决非线性问题);-训练数据量不足或特征信息不充分;-训练时间太短,模型尚未学到有效模式。-表现:训练
- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- 《UNIX网络编程卷1:套接字联网API》第8章:基本UDP套接字编程深度解析
《UNIX网络编程卷1:套接字联网API》第8章:基本UDP套接字编程深度解析(8000字图文实战)一、UDP协议核心特性与编程模型1.1UDP协议设计哲学UDP(UserDatagramProtocol)是面向无连接的传输层协议(图1),其核心特征包括:无连接通信:无需三次握手,直接发送数据报尽最大努力交付:不保证可靠性、不维护连接状态报文边界保留:接收方读取的数据与发送方写入完全一致低开销高效
- AI人工智能中的数据挖掘:提升智能决策能力
AI人工智能中的数据挖掘:提升智能决策能力关键词:数据挖掘、人工智能、机器学习、智能决策、数据分析、特征工程、模型优化摘要:本文深入探讨了数据挖掘在人工智能领域中的核心作用,重点分析了如何通过数据挖掘技术提升智能决策能力。文章从基础概念出发,详细介绍了数据挖掘的关键算法、数学模型和实际应用场景,并通过Python代码示例展示了数据挖掘的全流程。最后,文章展望了数据挖掘技术的未来发展趋势和面临的挑战
- Python 程序设计讲义(26):字符串的用法——字符的编码
睿思达DBA_WGX
Python讲义python开发语言
Python程序设计讲义(26):字符串的用法——字符的编码目录Python程序设计讲义(26):字符串的用法——字符的编码一、字符的编码二、`ASCII`编码三、`Unicode`编码四、使用`ord()`函数查询一个字符对应的`Unicode`编码五、使用`chr()`函数查询一个`Unicode`编码对应的字符六、`Python`字符串的特征一、字符的编码计算机默认只能处理二进制数,而不能处
- 数据可视化:数据世界的直观呈现
卢政权1
信息可视化数据分析数据挖掘
在当今数字化浪潮中,数据呈爆炸式增长。数据可视化作为一种强大的技术手段,能够将复杂的数据转化为直观的图形、图表等形式,让数据背后的信息一目了然。无论是在商业决策、科学研究还是日常数据分析中,数据可视化都发挥着极为重要的作用。它帮助我们快速理解数据的分布、趋势、关联等特征,从而为进一步的分析和行动提供有力支持。接下来,我们将深入探讨数据可视化的奥秘,并通过代码示例展示其实际应用。一、Python数据
- 基于随机森林的白酒风味智能分类系统:从数据到洞察的完整实践
笙囧同学
python
作者:笙囧同学|中科院计算机大模型方向硕士|全栈开发爱好者座右铭:偷懒是人生进步的阶梯联系方式:
[email protected]各大平台账号/公众号:笙囧同学前言大家好,我是笙囧同学!今天给大家分享一个超级有趣且技术含量爆表的项目——白酒风味智能分类系统。作为一个既爱技术又爱美酒的程序员,我花了大量时间研究如何用机器学习的方法来"品酒",让AI帮我们识别白酒的风味特征。这个项目融合了机器学习、数
- Serverless架构下Spring Function的创新实践
tmjpz04412
serverless架构spring
引言:Serverless与Spring生态的交汇背景介绍:云计算与Serverless架构的兴起Spring生态的演进与云原生适配性核心问题:传统Spring应用如何融入Serverless范式Serverless架构的核心特征与挑战事件驱动、弹性伸缩与按需计费冷启动问题与性能优化需求Spring应用在Serverless环境中的典型瓶颈(如依赖注入、上下文初始化)SpringFunction的
- AI心理学四层架构揭秘:语言模型为何“说谎“?
TGITCIC
AI-大模型的落地之道语言模型人工智能自然语言处理大模型国产大模型大模型落地
第一章神经层:代码编织的"脑电图"1.1注意力权重的量子跃迁当Claude3.5Haiku处理"达拉斯所在州的首府"这类问题时,其注意力权重图谱呈现出量子跃迁特征。研究团队通过归因图技术捕捉到:在输入"达拉斯"的瞬间,模型内部Texas节点的激活强度达到87.6%,首府概念节点同步飙升至79.3%。这种非线性激活模式与人类大脑的默认模式网络惊人相似。模型层级激活时序决策路径可解释性神经层300ms
- 4D卓越团队-习书C3
林晔0302
第三章4D系统-----神奇坐标的诞生一诞生背景:1物理学背景简化的二乘二矩阵,坐标系;2荣格1905年发表的人的性格发展理论;词汇参考MBTI指标坐标轴X:作出决策是用情感还是逻辑坐标轴Y:获取信息是靠直觉还是感觉。五感:视觉听觉嗅觉味觉触觉占70%二4D系统分析领导力领导者特征四维度:情感与直觉----绿色培养型情感与感觉---黄色包容型逻辑与直觉---蓝色展望型逻辑与感觉--橙色指导型三4D
- 【春招笔试真题】饿了么2025.03.07-算法岗真题
春秋招笔试突围
最新互联网春秋招试题合集算法代理模式
第一题:数据特征最大化1️⃣:找出数组中的最大元素,返回其平方难度:简单这是一道技巧性题目,乍看需要枚举所有子数组计算异或和和最大公约数。但通过分析可以发现,对任意单元素子数组,其异或值和最大公约数都是元素本身,因此乘积是元素的平方。可以证明,最大元素的平方就是整个问题的最优解。时间复杂度O(n)。第二题:同质接龙字符串1️⃣:记忆化搜索+动态规划2️⃣:使用状态编码降低存储复杂度难度:中等这道题
- 高铁站违规撑伞识别误检率↓79%:陌讯多模态融合算法实战解析
2501_92722744
算法人工智能目标检测计算机视觉目标跟踪
原创声明本文为原创技术解析,核心技术参数与架构参考自《陌讯技术白皮书》,禁止未经授权的转载与改编。一、行业痛点:密集场景下的违规撑伞识别难题在高铁站、地铁站等交通枢纽,违规撑伞(如非雨天在站台、通道内持伞)可能引发客流拥堵、设备刮擦等安全隐患。然而,传统视觉识别方案面临三大核心挑战:环境干扰大:进出站口光线突变(正午强光/夜间弱光)导致伞面特征提取不稳定,某枢纽站点实测数据显示,阴雨天违规撑伞识别
- yolo 目标检测600类目标
大霸王龙
行业+领域+业务场景=定制YOLO目标检测人工智能
1.模型架构调整类别适配:将YOLO输出层的类别节点数调整为600(如YOLOv5的detect.yaml中修改nc=600),并更新类别名称映射表(classes.txt)。骨干网络优化:若使用YOLOv5/v8,可升级骨干网络(如C3模块深度)或替换为更高性能的主干(如EfficientNet、ResNet-101),以增强复杂场景的特征提取能力。多尺度检测头:保留或扩展YOLO的多尺度输出(
- MYSQL:MySQL 事务隔离级别详解
奋斗的狍子007
MySQL核心知识点mysql数据库javaspring架构springbootide
一、MySQL事务是什么? MySQL事务是一组在数据库中执行的操作,这些操作要么全部成功执行,要么全部不执行,以确保数据库的完整性和一致性。事务的ACID 事务具有四个特征:原子性(Atomicity)、一致性(Consistency)、隔离性(Isolation)和持续性(Durability)。这四个特性简称为ACID特性。原子性:事务是数据库的逻辑工作单位,事务中包含的各操作要么都做,
- 基于AlexNet架构的卷积神经网络模型用于对胸部X光图像进行二分类(例如,诊断肺炎)
1.肺炎正常的胸部X线片描绘了清晰的肺部,图像中没有任何异常混浊的区域。正常的胸部X线片1.1细菌性肺炎临床表现细菌性肺炎通常由细菌引起,如肺炎链球菌、流感嗜血杆菌、肺炎克雷伯菌等。患者可能出现高热、寒战、咳嗽、咳痰(痰液可能呈脓性)、胸痛、呼吸困难等症状。影像学特征局灶性肺叶实变细菌性肺炎在影像学上常表现为肺叶或肺段的局灶性实变,即某一区域的肺组织因炎症而失去气体交换功能,呈现为高密度影。胸腔积
- 工作能力强的人有哪些共同特征?
郭强GQ
知乎上这个问题有1231个回答,关注者127,576,被浏览14,248,085。我摘录了其中一些回答,并与“卓有成效de管理实践”的十个方面对照。请看下文。回答1:(小猫倩倩-产品经理)许多人在职场中,想成为工作强人,却发现努力了没有效果,依旧在平庸中徘徊。这可能是没有做到用“创意工作”替代“日常工作”。表1列出了创意工作的特点对应的卓有成效de管理实践要做的事情,很明显,做好创意性的工作,要践
- 【Python高阶开发】1. Pandas工业级时序数据处理实战:从振动传感器数据到轴承故障预警系统
AI_DL_CODE
pythonpandas时序数据处理振动传感器工业数据清洗特征工程
摘要:在工业设备健康监测中,振动传感器数据是评估设备状态的核心依据,但高频噪声干扰、数据传输缺失、多设备时间戳错位等问题严重影响分析准确性。本文基于PythonPandas构建工业级时序数据处理流水线,提出"时间校正-缺失填充-噪声过滤-特征提取"四步清洗法,针对工业场景设计专用策略:短时缺失采用线性插值、长时缺失标记异常,振动数据结合移动平均与Z-score检测保留真实特征。通过时域(峰值、峭度
- 点滴成就梦想
卿城卿国
今天是非常充实的一天,我觉得时间安排的也比较合理,忙碌而收获颇多。夜深人静,我也将自己的忙碌告一段落,开始对自己的一天进行复盘早上八点前,为女儿准备好了简单的早餐,帮助女儿装好保温杯,在女儿喃喃的英语背诵声中,目送她走出家门去上学;静坐十分钟后,在我的家长《微课堂》中开课,今天是第二讲,“家长与不同阶段的孩子如何沟通?”,经过了二天的精心准备,今天主要以家长正确观念的梳理,小学一年级孩子的心理特征
- 老烟袋,黄花梨杆,天然玛瑙烟嘴,和田玉挂件,包洚浓厚品像一流,磨损自然,时代特征明显,保存完整实物如图。
书画作品交流
老烟袋,黄花梨杆,天然玛瑙烟嘴,和田玉挂件,包洚浓厚品像一流,磨损自然,时代特征明显,保存完整实物如图。图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App图片发自App
- 中级经济基础各类曲线汇总(5)
Coco万在简述
--写给报考中级经济师的小伙伴们2022年8月21日周日深圳晴1048/1000【主题】经济学基础【字数】1291今天的简文继续梳理中级经济师公共科目中的《经济基础知识》一书中的各类曲线之5,即完全竞争市场上行业的供求曲线和个别企业的需求曲线。首先,从市场结构理论来理解什么是完全竞争市场。完全竞争市场具备如下特征:1、市场上有很多生产者和消费者,或者说买家卖家,一般他们的规模很小,自己决定不了产品
- 为什么背后说他人坏话的人惹人讨厌,来看看心理学如何解释解释
王风悔
在背后说他人坏话的人往往令人极度反感,社会的道德似乎对这种人会有天生的排斥,大家见到这种人就会产生天然的厌恶。这是为什么呢?在沟通中,人们会把说话者用在别人身上的形容词跟说话者本身联系在一起。也就是说,当你说一个人很真诚,很善良,人们会下意识把这些特质联系到你身上。同理,如果你总是背地里说别人的坏话,人们也会把这些负面评价联系到你的身上。心理学上把这种现象,叫做“无意识特征转移”。古人有云:“莫言
- 42、智能制造与数字化转型:创新之路与实践成果
game4
智能制造数字化转型数据处理
智能制造与数字化转型:创新之路与实践成果1.数据处理决策与架构挑战在数据处理方面,需要考虑多个关键决策维度,主要包括摄入、处理和持久化。1.1数据摄入方式原始数据摄入:直接获取最基础、未经过处理的数据,能保留数据的完整性和原始特征,但可能数据量较大,处理成本较高。聚合数据摄入:对原始数据进行一定程度的汇总和整合,减少数据量,便于后续分析,但可能会丢失一些细节信息。1.2数据处理模式集中式处理:将数
- Python_day54Inception网络及其思考
且慢.589
Python_60python开发语言
一、inception网络介绍今天我们介绍inception,也就是GoogleNet传统计算机视觉的发展史从上面的链接,可以看到其实inceptionnet是在resnet之前的,那为什么我今天才说呢?因为他要引出我们后面的特征融合和特征并行处理这些思想。Inception网络,也被称为GoogLeNet,是Google团队在2014年提出的经典卷积神经网络架构。它的核心设计理念是“并行的多尺度
- 《你就是孩子最好的玩具》读书笔记
许个诺
一、父母管教孩子的常见误区1、控制型父母特征:”都给我停下来!不许乱跑!再捣乱就别想看电视!-命令和威胁是控制型的典型表现-这样不会让孩子有责任感,孩子长大后会更容易放纵自己。”2、放任型父母”不理他,我没办法,小孩子闹一闹没关系的。“”孩子学不会应有的社会规则-孩子长大会缺乏约束和规矩,没有群体归属感,更容易涉及毒品、早孕和帮派、网络成瘾。因为他们需要极强的团队依赖。”3、轻视、低估和否定孩子的
- AI 绘画 + 编程:10 分钟生成个性化艺术作品
大力出奇迹985
人工智能
本文围绕Python+OpenCV实现自动人脸识别门禁系统展开,先概述系统的基本构成与作用,再从系统核心技术、开发实现步骤、功能扩展方向、实际应用场景及优化改进策略五个方面详细阐述,最后总结系统的价值与发展前景,为相关开发和应用提供全面参考。一、系统核心技术解析人脸识别技术是门禁系统的核心,其关键在于对人脸特征的精准提取与匹配。OpenCV作为开源计算机视觉库,提供了丰富的人脸检测算法,如Haar
- Java过滤器与拦截器深度解析
目录概述过滤器Filter拦截器Interceptor执行流程图解核心区别对比代码实现示例使用场景最佳实践概述在JavaWeb开发中,过滤器(Filter)和拦截器(Interceptor)是两种重要的请求处理机制。它们都能够对HTTP请求进行预处理和后处理,但在实现方式、执行时机和应用场景上有着显著的区别。关键特征对比表特征过滤器(Filter)拦截器(Interceptor)️基于Servle
- Matlab医学图像配准工具箱使用指南
远方之巅
本文还有配套的精品资源,点击获取简介:医学图像配准是一个关键的IT技术,特别是对于不同条件下的医学图像分析至关重要。’fordanic/image-registration’是一个Matlab工具箱,它提供了易于使用的接口和算法,助力研究人员和工程师高效准确地完成医学图像配准工作。工具箱内包含了多个示例脚本,详细演示了二维和三维空间中的图像配准步骤,包括图像预处理、特征检测、相似性度量、几何变换模
- 《雪漠心学概论》第四章 雪漠心学方法论49
王慧笔
五、智慧本体之完成——真心状态成为常态当真心之光明能够在日常生活中,于诸事上打成一片时,保任阶段之修行即可谓有成。而从明心见性到保任有成,这一过程较为漫长,通常需要数年甚至数十年的时间。修行者在此过程中会历经诸多不同阶段,如登梯般,对此佛家显宗经典有“十地”之说。即:欢喜地、离垢地、发光地、焰慧地、难胜地、现前地、远行地、不动地、善慧地、法云地。为便于读者理解各阶段真心状态之特征及掌握修行要诀,笔
- Python爬虫【三十二章】爬虫高阶:动态页面处理与Scrapy+Selenium+BeautifulSoup分布式架构深度解析实战
目录引言一、动态页面爬取的技术背景1.1动态页面的核心特征1.2传统爬虫的局限性二、技术选型与架构设计2.1核心组件分析2.2架构设计思路1.分层处理2.数据流三、代码实现与关键技术3.1Selenium与Scrapy的中间件集成3.2BeautifulSoup与ScrapyItem的整合3.3分布式爬取实现3.3.1Scrapy-Redis部署3.3.2多节点启动四、优化与扩展4.1性能优化策略
- Go语言--语法基础6--基本数据类型--切片类型
Go语言切片是对数组的抽象。Go数组的长度不可改变,在特定场景中这样的集合就不太适用,Go中提供了一种灵活、功能强悍的内置类型切片("动态数组"),与数组相比切片的长度是不固定的,可以追加元素,在追加时可能使切片的容量增大。切片是一个在Go语言中引入的新理念,它有一些特征如下:对数组抽象数组长度不固定可追加元素切片容量可增大1、定义切片你可以声明一个未指定大小的数组来定义切片:varidentif
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro