- UCLAMP0501P.TCT SEMTECH:超低电容TVS二极管 0.25pF+20kV防护!
UCLAMP0501P.TCTSEMTECH:超低电容TVS一、产品简介UCLAMP0501P.TCT是SEMTECH最新推出的超低电容单通道TVS二极管,采用第五代硅雪崩技术,专为5G手机天线、IoT设备、超极本USB4接口设计。以0.25pF行业最低电容和20kV防护等级,成为高速信号保护的终极解决方案!二、五大颠覆性优势信号0损伤0.25pF超低电容(比头发丝细1000倍)支持40GbpsT
- RCLAMP0504S.TCT 升特半导体TVS二极管 无损传输+军工防护+纳米护甲 ESD防护芯片
深圳市尚想信息技术有限公司
ESD防护芯片SemtechUSB4车规电子AI硬件
RCLAMP0504S.TCTSemtechTVS二极管阵列一、产品简介RCLAMP0504S.TCT是Semtech新一代超低电容TVS二极管阵列,专为USB4、Thunderbolt™4、HDMI2.1等超高速接口打造!以0.3pF行业最低电容和20Gbps无损传输能力,成为高端电子设备的"隐形防护盾"!二、五大颠覆性优势信号0损耗0.3pF超低电容(比前代降低40%),支持20Gbps超高速
- RCLAMP0512TQTCT 升特半导体 TVS二极管 12通道全防护芯片 以太网/PLC控制/5G基站专用
RCLAMP0512TQTCTSemtech:12通道全防护TVS阵列一、产品简介RCLAMP0512TQTCT是Semtech最新推出的12通道超低电容TVS二极管阵列,专为工业以太网、PLC控制、5G基站等高干扰环境设计!凭借0.4pF超低电容+30kV浪涌防护能力,成为严苛环境下的"电路防弹衣"!二、六大核心优势军工级防护标准30kV/10kA浪涌防护(IEC61000-4-5Level4)
- 神奇的平静
漫步的小马驹
我们七组色香味俱全的特色菜百家宴我们七组的仙女们仙女们在舞动上图是今晚上海nlp课堂的晚会照片。熟悉的场地,熟悉的伙伴们。只是,我从画面里,跑到了画面外。决定不去二阶的时候,我以为在这样的时刻,我会有很多情绪:郁闷、遗憾、羡慕、纠结……没想到,这一刻真的来临的时候,我心里是满满的喜悦、平静。其实,在读到惠安的时,我内心有些小波动:惠安和我工作类似,她也面临突击检查,她因为领导的理解、同事的护援而得
- RCLAMP2574N.TCT Semtech:超低钳位TVS二极管 0.5pF超低电容+±30kV超强防护
深圳市尚想信息技术有限公司
TVS二极管Semtech半导体工业以太网车载电子5G防护
RCLAMP2574N.TCTSemtech:超低钳位TVS阵列一、产品简介RCLAMP2574N.TCT是Semtech新一代多通道TVS二极管阵列,采用专利硅雪崩技术,专为千兆以太网、工业总线、汽车电子等严苛环境设计。以0.5pF超低电容和±30kV超强防护能力,成为高速接口的"防弹护甲"!二、五大核爆优势军工级防护±30kV接触放电(IEC61000-4-2Level4++)0.5ns极速响
- Windows下Oracle安装图解
叫我老村长
Windows下Oracle安装图解----oracle-win-64-11g详细安装步骤一、Oracle下载官方下地址http://www.oracle.com/technetwork/database/enterprise-edition/downloads/index.htmlwin32位操作系统下载地址:http://download.oracle.com/otn/nt/oracle11g
- 用matlab对微分方程组进行仿真,基于MATLAB的微分方程组的数值计算
稗官无印
238科技资讯科技资讯SCIENCE&TECHNOLOGYINFORMATION2009NO.06SCIENCE&TECHNOLOGYINFORMATION学术论坛传统的解微分方程组的方法有近似分析解法﹑表解法和图解法。这些方法有一定的局限性。MATLAB是一种基于矩阵的数学软件包,该软件包包括了一个数值程序扩展库,并且有高级编程格式。应用MATLAB工具箱中自带的四阶五级的龙格库塔法(ode45
- 使用中转API在Python中调用大型语言模型 (LLM) 的实践**
qq_37836323
python语言模型开发语言
**在人工智能技术中,大型语言模型(LLM)已成为自然语言处理(NLP)和生成任务的重要工具。然而,由于网络限制,直接访问OpenAI的API在中国可能面临挑战。因此,本文将介绍如何使用中转API地址http://api.wlai.vip来调用LLM,并提供相关的demo代码。什么是大型语言模型(LLM)?大型语言模型是一种深度学习模型,训练于大量文本数据上,能够生成、总结、翻译和回答问题等。Op
- 【AI大模型:前沿】43、Mamba架构深度解析:为什么它是Transformer最强挑战者?
无心水
架构transformerMambaMamba架构AI大模型系统开发实战AI大模型高手开发AI大模型系统实战
Transformer架构自2017年诞生以来,一直是NLP、计算机视觉等领域的“统治级”模型架构。但随着序列长度需求的增长(如128K长文本处理、基因组学超长序列分析),其自注意力机制的O(n2)O(n^2)O(n2)计算复杂度成为难以逾越的瓶颈。2023年底,由AlbertGu和TriDao等人提出的Mamba架构,通过创新的“选择性状态空间模型(SelectiveSSM)”实现了线性复杂度(
- TechGPT3部署
环境配置与TechGPT2配置相同:TechGPT2部署-CSDN博客。模型下载步骤如下。sudoaptupdatesudoaptinstallgit-lfs-ygitlfsinstall学术加速并克隆模型代码库。source/etc/network_turbogitclonehttps://github.com/neukg/TechGPT-3.0.git禁用smudge,防止clone过程中拉大
- 金融科技中的远程开户、海外个人客户在线开户、企业客户远程开户
练习两年半的工程师
金融科技金融科技
远程开户(RemoteAccountOpening)1.传统开户流程的问题传统银行开户,需要面对面访谈(face-to-faceinterviews),且必须去银行网点(atbanks’branches)。这对一些客户来说很不方便(inconveniencetocertaincustomers),比如没时间去网点、距离网点远的人。2.监管科技的两步验证方案(Regtechsolutions)为了解
- 【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts) 视频教程 - 微博文章数据可视化分析-文章分类下拉框实现
java1234_小锋
NLPNLLP微博舆情分析python自然语言处理flask
大家好,我是java1234_小锋老师,最近写了一套【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts)视频教程,持续更新中,计划月底更新完,感谢支持。今天讲解微博文章数据可视化分析-文章分类下拉框实现视频在线地址:2026版【NLP舆情分析】基于python微博舆情分析可视化系统(flask+pandas+echarts+爬虫)视频教程(火爆连载更
- Rouge:面向摘要自动评估的召回导向型指标——原理、演进与应用全景
大千AI助手
深度学习人工智能神经网络Rouge文本摘要Summary评估
“以n-gram重叠量化文本生成质量,为摘要评估提供可计算标尺”Rouge(Recall-OrientedUnderstudyforGistingEvaluation)是由南加州大学信息科学研究所(ISI)的Chin-YewLin于2004年提出的自动文本摘要评估指标,其核心思想是通过计算生成文本与参考摘要之间的n-gram重叠率,量化摘要的内容覆盖度与忠实度。作为自然语言处理(NLP)领域最权威
- 甘超波:NLP权谋中谈判流程
甘超波
哈喽,大家好我是甘超波,是一名NLP爱好者,每天一篇原创文章或视频,分享我的实战经验和案例,希望给你些启发和帮助今天主要分享权谋中的谈判流程一:什么是谈判?有的伙伴认为:谈判就是勾心斗角有的伙伴认为:只有商业和国家用到谈判还有的伙伴认为:谈判是一种很高大上的方法和技巧这是不同的伙伴对谈判的看法,这些都是不全面的到底什么是谈判?谈判:处理事情设计出一系列巧妙的方法、技巧、流程,让对方配合你、支持你的
- Talk|北京大学张嘉曌:NaVid - 视觉语言导航大模型
TechBeat人工智能社区
每周Talk上架机器人自然语言处理计算机视觉具身智能视觉语言大模型
本期为TechBeat人工智能社区第602期线上Talk。北京时间6月20日(周四)20:00,北京大学博士生—张嘉曌的Talk已经准时在TechBeat人工智能社区开播!他与大家分享的主题是:“NaVid-视觉语言导航大模型”,NaVid是首个专为视觉语言导航(VLN)任务设计的基于视频的具身大模型。NaVid使用导航过程中的视频观测和自然语言指令作为输入,直接输出机器人的导航动作。与大部分已有
- 字节的机器人模型 GR-3
三谷秋水
机器学习计算机视觉大模型机器人语言模型计算机视觉人工智能机器学习
25年7月字节发布技术报告“GR-3TechnicalReport”。这是字节在通才机器人策略方面的最新进展,即GR-3的开发。GR-3是一个大规模的视觉-语言-动作(VLA)模型。它展现出卓越的泛化能力,能够泛化至新物体、新环境以及涉及抽象概念的指令。此外,它能够利用极少的人类轨迹数据进行高效微调,从而快速且经济高效地适应新环境。GR-3还擅长处理长范围和灵巧的任务,包括需要双手操作和移动的任务
- 百度文心大模型ERNIE全面解析
KENYCHEN奉孝
python实践大全AIERNIE人工智能后端文心大模型python
百度文心大模型ERNIE概述百度推出的文心大模型(ERNIE,EnhancedRepresentationthroughkNowledgeIntEgration)系列是结合知识增强技术的预训练大模型,涵盖自然语言处理(NLP)、跨模态、行业应用等多个方向。其开源版本为开发者提供了可商用的大模型能力支持。ERNIE的核心技术特点知识增强:通过多源知识图谱(如百度百科、专业领域数据)注入,提升模型对实
- AI办公(综合)课程内容框架
建模中…
AI-native
AI办公(综合)课程内容框架:深度挖掘与分析一、课程定位深化:从“技能学习”到“价值创造体系构建”传统办公课程聚焦单点工具,本课程定位突破技能培训边界,构建“技术-场景-价值”闭环:-技术穿透性:不局限于AI工具表层操作,深入讲解自然语言处理(NLP)、生成式对抗网络(GANs)等技术在办公场景的底层逻辑,让学员理解“AI为何能优化流程”,而非仅知“如何用工具”。-场景延展性:覆盖内容运营、协作管
- Standard_Mutex 类详解
心瞳几何原语
学习OCCTOCCTQt
//Createdon:2005-04-10//Createdby:AndreyBETENEV//Copyright(c)2005-2014OPENCASCADESAS////ThisfileispartofOpenCASCADETechnologysoftwarelibrary.////Thislibraryisfreesoftware;youcanredistributeitand/ormod
- 学习014-03-01-04 Disable the Audit Trail Module(禁用审计跟踪模块)
汤姆•猫
XAF学习.netXAFDevC#SecurityAudit
DisabletheAuditTrailModule(禁用审计跟踪模块)DisabletheModulePermanently(永久禁用该模块)Thistechniqueallowsyoutostoptrackingchangesthroughouttheapplication.Todothis,usethestandardDbContextFactoryinsteadofAuditedDbCon
- 自然语言处理技术应用领域深度解析:从理论到实践的全面探索
1.引言:自然语言处理的技术革命与应用前景自然语言处理(NaturalLanguageProcessing,NLP)作为人工智能领域的核心分支,正在以前所未有的速度改变着我们的数字化生活。从最初的规则基础系统到如今基于深度学习的大语言模型,NLP技术经历了从理论探索到实际应用的深刻变革。在当今信息爆炸的时代,人类每天产生的文本数据量达到了惊人的规模,如何让计算机理解、处理和生成人类语言,已经成为推
- 粒子群优化在实际工程中的应用
国际期刊InternationalJournalofComplexityinAppliedScienceandTechnology,收录进化计算,机器学习和大数据方面的论文,网址:https://www.inderscience.com/jhome.php?jcode=ijcast粒子群优化(PSO)算法因其简单、高效和灵活性在实际工程中的许多领域得到了广泛应用。以下是一些具体的应用实例:1.结构
- 7.24 C语言学习^_^
1.逻辑与表达式中只要有一个为假整个表达式都为假后面的表达式不再运行2.逻辑或表达式中只要有一个为真整个表达式都为真后面的表达式不再运行总结:&&左边为假,右边就不计算了||左边为真,右边就不计算了3.逗号表达式从左向右依次执行最后一个表达式的结果就是整个表达式的结果4.数组arr【7】可以写成7【arr】(对数组的深刻理解)5.CPU计算数据时是以int型来计算的而int有32个bitechar
- 大语言模型原理与工程实践:RLHF 实战框架
AI天才研究院
AI大模型企业级应用开发实战AI大模型应用入门实战与进阶AI人工智能与大数据计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
大语言模型原理与工程实践:RLHF实战框架1.背景介绍1.1人工智能的崛起人工智能(AI)技术在过去几年中取得了令人瞩目的进展,尤其是在自然语言处理(NLP)和计算机视觉(CV)等领域。大型语言模型(LLM)的出现,使得人工智能系统能够生成逼真的自然语言输出,从而在多个应用场景中发挥重要作用。1.2大语言模型的挑战然而,训练出高质量的大语言模型并非易事。传统的监督学习方法需要大量高质量的标注数据,
- 包裹堆叠场景识别率↑76%!陌讯动态建模算法在物流分拣的实战优化
2501_92489052
算法人工智能深度学习计算机视觉目标检测
原创声明:本文核心技术解析基于陌讯视觉算法白皮书v3.5,实验数据来自某头部物流企业实测报告一、行业痛点:物流分拣的"移动包裹困境"据《2024智慧物流技术发展蓝皮书》统计,自动化分拣中心因包裹堆叠、高速移动导致的漏检率高达34.7%(数据来源:LogisticsTechReviewVol.12)。在实地调研中发现三大核心挑战:动态遮挡干扰:包裹在传送带上的随机堆叠(如图1所示)尺度突变问题:小件
- 主要分布在背侧海马体(dHPC)CA1区域(dCA1)的时空联合细胞对NLP中的深层语义分析的积极影响和启示
金井PRATHAMA
脑神经科学与NLP自然语言处理人工智能神经网络
时空联合细胞(SpatiotemporalConjunctiveCells)主要分布在背侧海马体CA1区(dCA1),其核心功能是同步编码空间位置、时间信息和行为意图,形成动态的情景记忆表征。这种神经机制为自然语言处理(NLP)中的深层语义分析提供了突破性的启示,尤其在解决语义连贯性、上下文建模和长期依赖等核心挑战上。以下是具体影响和技术实现路径:一、时空联合细胞的核心机制及其NLP关联背侧海马体
- Transformer:颠覆NLP的自注意力革命
ZhangJiQun&MXP
教学2024大模型以及算力2021AIpythontransformer自然语言处理深度学习
Transformer:颠覆NLP的自注意力革命Transformer是自然语言处理领域中极具影响力的深度学习模型架构,以下是对其的详细介绍:提出背景与应用:2017年,Vaswani等人在《AttentionIsAllYouNeed》论文中首次提出Transformer架构,它主要用于处理序列到序列的任务,如机器翻译、文本生成等。核心原理:文本生成的Transformer模型原理是“预测下一个词
- Swin Transformer原理与代码精讲
bai666ai
深度学习之计算机视觉transformerswinCV深度学习图像分类
课程链接:SwinTransformer原理与代码精讲--计算机视觉视频教程-人工智能-CSDN程序员研修院Transformer在许多NLP(自然语言处理)任务中取得了最先进的成果。SwinTransformer是在ViT基础上发展而来,是Transformer应用于CV(计算机视觉)领域又一里程碑式的工作。它可以作为通用的骨干网络,用于图片分类的CV任务,以及下游的CV任务,如目标检测、实例分
- 深入探讨 Transformer 模型架构
年纪轻轻头已凉
transformer深度学习人工智能
```html深入探讨Transformer模型架构深入探讨Transformer模型架构Transformer是一种革命性的神经网络架构,由Vaswani等人在2017年提出,并在自然语言处理(NLP)领域取得了显著的成功。与传统的循环神经网络(RNN)和卷积神经网络(CNN)不同,Transformer完全依赖于自注意力机制(Self-AttentionMechanism),这使得它在处理长序
- 【作物模型】R语言与作物模型(以DSSAT模型为例)融合应用
没有梦想的咸鱼185-1037-1663
R语言DSSAT模型生态系统r语言开发语言数据分析
随着基于过程的作物生长模型(Process-basedCropGrowthSimulationModel)的发展,R语言在作物生长模型和数据分析、挖掘和可视化中发挥着越来越重要的作用。想要成为一名优秀的作物模型使用者与科研团队不可或缺的人才,除了掌握对作物模型相关知识之外,还要掌握模型的快速模拟和高效数据分析能力。DecisionSupportSystemsforAgrotechnologyTra
- ASM系列五 利用TreeApi 解析生成Class
lijingyao8206
ASM字节码动态生成ClassNodeTreeAPI
前面CoreApi的介绍部分基本涵盖了ASMCore包下面的主要API及功能,其中还有一部分关于MetaData的解析和生成就不再赘述。这篇开始介绍ASM另一部分主要的Api。TreeApi。这一部分源码是关联的asm-tree-5.0.4的版本。
在介绍前,先要知道一点, Tree工程的接口基本可以完
- 链表树——复合数据结构应用实例
bardo
数据结构树型结构表结构设计链表菜单排序
我们清楚:数据库设计中,表结构设计的好坏,直接影响程序的复杂度。所以,本文就无限级分类(目录)树与链表的复合在表设计中的应用进行探讨。当然,什么是树,什么是链表,这里不作介绍。有兴趣可以去看相关的教材。
需求简介:
经常遇到这样的需求,我们希望能将保存在数据库中的树结构能够按确定的顺序读出来。比如,多级菜单、组织结构、商品分类。更具体的,我们希望某个二级菜单在这一级别中就是第一个。虽然它是最后
- 为啥要用位运算代替取模呢
chenchao051
位运算哈希汇编
在hash中查找key的时候,经常会发现用&取代%,先看两段代码吧,
JDK6中的HashMap中的indexFor方法:
/**
* Returns index for hash code h.
*/
static int indexFor(int h, int length) {
- 最近的情况
麦田的设计者
生活感悟计划软考想
今天是2015年4月27号
整理一下最近的思绪以及要完成的任务
1、最近在驾校科目二练车,每周四天,练三周。其实做什么都要用心,追求合理的途径解决。为
- PHP去掉字符串中最后一个字符的方法
IT独行者
PHP字符串
今天在PHP项目开发中遇到一个需求,去掉字符串中的最后一个字符 原字符串1,2,3,4,5,6, 去掉最后一个字符",",最终结果为1,2,3,4,5,6 代码如下:
$str = "1,2,3,4,5,6,";
$newstr = substr($str,0,strlen($str)-1);
echo $newstr;
- hadoop在linux上单机安装过程
_wy_
linuxhadoop
1、安装JDK
jdk版本最好是1.6以上,可以使用执行命令java -version查看当前JAVA版本号,如果报命令不存在或版本比较低,则需要安装一个高版本的JDK,并在/etc/profile的文件末尾,根据本机JDK实际的安装位置加上以下几行:
export JAVA_HOME=/usr/java/jdk1.7.0_25  
- JAVA进阶----分布式事务的一种简单处理方法
无量
多系统交互分布式事务
每个方法都是原子操作:
提供第三方服务的系统,要同时提供执行方法和对应的回滚方法
A系统调用B,C,D系统完成分布式事务
=========执行开始========
A.aa();
try {
B.bb();
} catch(Exception e) {
A.rollbackAa();
}
try {
C.cc();
} catch(Excep
- 安墨移动广 告:移动DSP厚积薄发 引领未来广 告业发展命脉
矮蛋蛋
hadoop互联网
“谁掌握了强大的DSP技术,谁将引领未来的广 告行业发展命脉。”2014年,移动广 告行业的热点非移动DSP莫属。各个圈子都在纷纷谈论,认为移动DSP是行业突破点,一时间许多移动广 告联盟风起云涌,竞相推出专属移动DSP产品。
到底什么是移动DSP呢?
DSP(Demand-SidePlatform),就是需求方平台,为解决广 告主投放的各种需求,真正实现人群定位的精准广
- myelipse设置
alafqq
IP
在一个项目的完整的生命周期中,其维护费用,往往是其开发费用的数倍。因此项目的可维护性、可复用性是衡量一个项目好坏的关键。而注释则是可维护性中必不可少的一环。
注释模板导入步骤
安装方法:
打开eclipse/myeclipse
选择 window-->Preferences-->JAVA-->Code-->Code
- java数组
百合不是茶
java数组
java数组的 声明 创建 初始化; java支持C语言
数组中的每个数都有唯一的一个下标
一维数组的定义 声明: int[] a = new int[3];声明数组中有三个数int[3]
int[] a 中有三个数,下标从0开始,可以同过for来遍历数组中的数
- javascript读取表单数据
bijian1013
JavaScript
利用javascript读取表单数据,可以利用以下三种方法获取:
1、通过表单ID属性:var a = document.getElementByIdx_x_x("id");
2、通过表单名称属性:var b = document.getElementsByName("name");
3、直接通过表单名字获取:var c = form.content.
- 探索JUnit4扩展:使用Theory
bijian1013
javaJUnitTheory
理论机制(Theory)
一.为什么要引用理论机制(Theory)
当今软件开发中,测试驱动开发(TDD — Test-driven development)越发流行。为什么 TDD 会如此流行呢?因为它确实拥有很多优点,它允许开发人员通过简单的例子来指定和表明他们代码的行为意图。
TDD 的优点:
&nb
- [Spring Data Mongo一]Spring Mongo Template操作MongoDB
bit1129
template
什么是Spring Data Mongo
Spring Data MongoDB项目对访问MongoDB的Java客户端API进行了封装,这种封装类似于Spring封装Hibernate和JDBC而提供的HibernateTemplate和JDBCTemplate,主要能力包括
1. 封装客户端跟MongoDB的链接管理
2. 文档-对象映射,通过注解:@Document(collectio
- 【Kafka八】Zookeeper上关于Kafka的配置信息
bit1129
zookeeper
问题:
1. Kafka的哪些信息记录在Zookeeper中 2. Consumer Group消费的每个Partition的Offset信息存放在什么位置
3. Topic的每个Partition存放在哪个Broker上的信息存放在哪里
4. Producer跟Zookeeper究竟有没有关系?没有关系!!!
//consumers、config、brokers、cont
- java OOM内存异常的四种类型及异常与解决方案
ronin47
java OOM 内存异常
OOM异常的四种类型:
一: StackOverflowError :通常因为递归函数引起(死递归,递归太深)。-Xss 128k 一般够用。
二: out Of memory: PermGen Space:通常是动态类大多,比如web 服务器自动更新部署时引起。-Xmx
- java-实现链表反转-递归和非递归实现
bylijinnan
java
20120422更新:
对链表中部分节点进行反转操作,这些节点相隔k个:
0->1->2->3->4->5->6->7->8->9
k=2
8->1->6->3->4->5->2->7->0->9
注意1 3 5 7 9 位置是不变的。
解法:
将链表拆成两部分:
a.0-&
- Netty源码学习-DelimiterBasedFrameDecoder
bylijinnan
javanetty
看DelimiterBasedFrameDecoder的API,有举例:
接收到的ChannelBuffer如下:
+--------------+
| ABC\nDEF\r\n |
+--------------+
经过DelimiterBasedFrameDecoder(Delimiters.lineDelimiter())之后,得到:
+-----+----
- linux的一些命令 -查看cc攻击-网口ip统计等
hotsunshine
linux
Linux判断CC攻击命令详解
2011年12月23日 ⁄ 安全 ⁄ 暂无评论
查看所有80端口的连接数
netstat -nat|grep -i '80'|wc -l
对连接的IP按连接数量进行排序
netstat -ntu | awk '{print $5}' | cut -d: -f1 | sort | uniq -c | sort -n
查看TCP连接状态
n
- Spring获取SessionFactory
ctrain
sessionFactory
String sql = "select sysdate from dual";
WebApplicationContext wac = ContextLoader.getCurrentWebApplicationContext();
String[] names = wac.getBeanDefinitionNames();
for(int i=0; i&
- Hive几种导出数据方式
daizj
hive数据导出
Hive几种导出数据方式
1.拷贝文件
如果数据文件恰好是用户需要的格式,那么只需要拷贝文件或文件夹就可以。
hadoop fs –cp source_path target_path
2.导出到本地文件系统
--不能使用insert into local directory来导出数据,会报错
--只能使用
- 编程之美
dcj3sjt126com
编程PHP重构
我个人的 PHP 编程经验中,递归调用常常与静态变量使用。静态变量的含义可以参考 PHP 手册。希望下面的代码,会更有利于对递归以及静态变量的理解
header("Content-type: text/plain");
function static_function () {
static $i = 0;
if ($i++ < 1
- Android保存用户名和密码
dcj3sjt126com
android
转自:http://www.2cto.com/kf/201401/272336.html
我们不管在开发一个项目或者使用别人的项目,都有用户登录功能,为了让用户的体验效果更好,我们通常会做一个功能,叫做保存用户,这样做的目地就是为了让用户下一次再使用该程序不会重新输入用户名和密码,这里我使用3种方式来存储用户名和密码
1、通过普通 的txt文本存储
2、通过properties属性文件进行存
- Oracle 复习笔记之同义词
eksliang
Oracle 同义词Oracle synonym
转载请出自出处:http://eksliang.iteye.com/blog/2098861
1.什么是同义词
同义词是现有模式对象的一个别名。
概念性的东西,什么是模式呢?创建一个用户,就相应的创建了 一个模式。模式是指数据库对象,是对用户所创建的数据对象的总称。模式对象包括表、视图、索引、同义词、序列、过
- Ajax案例
gongmeitao
Ajaxjsp
数据库采用Sql Server2005
项目名称为:Ajax_Demo
1.com.demo.conn包
package com.demo.conn;
import java.sql.Connection;import java.sql.DriverManager;import java.sql.SQLException;
//获取数据库连接的类public class DBConnec
- ASP.NET中Request.RawUrl、Request.Url的区别
hvt
.netWebC#asp.nethovertree
如果访问的地址是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree%3C&n=myslider#zonemenu那么Request.Url.ToString() 的值是:http://h.keleyi.com/guestbook/addmessage.aspx?key=hovertree<&
- SVG 教程 (七)SVG 实例,SVG 参考手册
天梯梦
svg
SVG 实例 在线实例
下面的例子是把SVG代码直接嵌入到HTML代码中。
谷歌Chrome,火狐,Internet Explorer9,和Safari都支持。
注意:下面的例子将不会在Opera运行,即使Opera支持SVG - 它也不支持SVG在HTML代码中直接使用。 SVG 实例
SVG基本形状
一个圆
矩形
不透明矩形
一个矩形不透明2
一个带圆角矩
- 事务管理
luyulong
javaspring编程事务
事物管理
spring事物的好处
为不同的事物API提供了一致的编程模型
支持声明式事务管理
提供比大多数事务API更简单更易于使用的编程式事务管理API
整合spring的各种数据访问抽象
TransactionDefinition
定义了事务策略
int getIsolationLevel()得到当前事务的隔离级别
READ_COMMITTED
- 基础数据结构和算法十一:Red-black binary search tree
sunwinner
AlgorithmRed-black
The insertion algorithm for 2-3 trees just described is not difficult to understand; now, we will see that it is also not difficult to implement. We will consider a simple representation known
- centos同步时间
stunizhengjia
linux集群同步时间
做了集群,时间的同步就显得非常必要了。 以下是查到的如何做时间同步。 在CentOS 5不再区分客户端和服务器,只要配置了NTP,它就会提供NTP服务。 1)确认已经ntp程序包: # yum install ntp 2)配置时间源(默认就行,不需要修改) # vi /etc/ntp.conf server pool.ntp.o
- ITeye 9月技术图书有奖试读获奖名单公布
ITeye管理员
ITeye
ITeye携手博文视点举办的9月技术图书有奖试读活动已圆满结束,非常感谢广大用户对本次活动的关注与参与。 9月试读活动回顾:http://webmaster.iteye.com/blog/2118112本次技术图书试读活动的优秀奖获奖名单及相应作品如下(优秀文章有很多,但名额有限,没获奖并不代表不优秀):
《NFC:Arduino、Andro