此题与1.32、1.33是一个系列题,没什么难度,只不过把sum的加改成乘就可以了,递归与迭代版本相应修改即可:
<!---->
;(define (product term a
next
b)
; (
if
(
>
a b)
;
1
; (
*
(term a) (product term (
next
a)
next
b))))
(define (product
-
iter term a
next
b result)
(
if
(
>
a b)
result
(product
-
iter term (
next
a)
next
b (
*
result (term a)))))
分号注释的是递归版本。利用product过程生成一个计算pi的过程,也是很简单,通过观察公式的规律即可得出:
<!---->
(define (product term a
next
b)
(product
-
iter term a
next
b
1
))
(define (inc x) (
+
x
2
))
(define (pi
-
term n)(
/
(
*
(
-
n
1
) (
+
n
1
)) (
*
n n)))
(define (product
-
pi a b)
(product pi
-
term a inc b))
测试一下:
<!---->
>
(
*
4
(product
-
pi
3
1000
))
3.1431638424191978569077933
再来看习题1.32,如果说sum和product过程是一定程度的抽象,将对累积项和下一项的处理抽象为过程作为参数提取出来,那么这个题目要求将累积的操作也作为参数提取出来,是更高层次的抽象,同样也难不倒我们:
<!---->
(define (accumulate combiner null
-
value term a
next
b)
(
if
(
>
a b)
null
-
value
(combiner (term a) (accumulate combiner null
-
value term (
next
a)
next
b))))
OK,其中combiner是进行累积的操作,而null-value值基本值。现在改写sum和product过程,对于sum过程来说,累积的操作就是加法,而基本值当然是0了:
<!---->
(define (sum term a
next
b)
(accumulate
+
0
term a
next
b))
而对于product,累积操作是乘法,而基本值是1,因此:
<!---->
(define (product term a
next
b)
(accumulate
*
1
term a
next
b))
测试一下过去写的那些测试程序,比如生成pi的过程,可以验证一切正常!
上面的accumulate过程是递归版本,对应的迭代版本也很容易改写了:
<!---->
(define (accumulate
-
iter combiner term a
next
b result)
(
if
(
>
a b)
result
(accumulate
-
iter combiner term (
next
a)
next
b (combiner result (term a)))))
(define (accumulate combiner null
-
value term a
next
b)
(accumulate
-
iter combiner term a
next
b null
-
value))
再看习题1.33,在accumulate的基础上多增加一个filter的参数(也是一个过程,用于判断项是否符合要求),在accumulate的基础上稍微修改下,在每次累积之前进行判断即可:
<!---->
(define (filtered
-
accumulate combiner null
-
value term a
next
b filter)
(cond ((
>
a b) null
-
value)
((filter a) (combiner (term a) (filtered
-
accumulate combiner null
-
value term (
next
a)
next
b filter)))
(
else
(filtered
-
accumulate combiner null
-
value term (
next
a)
next
b filter))))
比如,求a到b中的所有素数之和的过程可以写为(利用以前写的prime?过程来判断素数):
<!---->
(define (sum
-
primes a b)
(filtered
-
accumulate
+
0
identity a inc b prime
?
))
测试一下:
<!---->
>
(sum
-
primes
2
4
)
5
>
(sum
-
primes
2
7
)
17
>
(sum
-
primes
2
11
)
28
>
(sum
-
primes
2
100
)
1060