- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- oracle health check,ORACLE SQL Tuning Health-Check(SQLHC)
爱护哼哼
oraclehealthcheck
一条sql语句的性能主要依赖于好的物理结构,准确的系统统计数据,准确的对象统计数据,合理的查询优化器参数,合理的系统参数.这些数据也就是CBO计算的基本参数,SQLHC(文档ID1366133.1)正是为用户提供sql的这些数据,来辅助sql调优.特别适合无法在客户环境中调优的情况,SQLHC虽然没有SQLT(文档ID215187.1)更强大,但不需要在采集的库上建用户,会被更多的客户所接受.以下
- Prompt Engineering(提示词工程)基础了解
Fuly1024
LLMprompt
参考:https://blog.csdn.net/qq_56438555/article/details/1448865171.基础概念:提示词工程(promptEngineering)是指通过设计、优化输入给大语言模型的文本指令(即“提示词”),引导LLM输出我们期望的结果。让大模型在无需微调(Fine-tuning)的情况下,通过“更好的提问方式”完成复杂任务(开发潜力,不会的还是不会)。但是
- 想进大厂?LLMs 10道面试题提前看,有问有答,图文详解!
AI大模型-大飞
人工智能大模型chatgpt产品经理AI程序员大模型面试题
一、微调与优化21、LLM的微调流程是什么?微调(Fine-tuning)LLMs指的是在特定任务或数据上对预训练好的模型进行进一步训练,使其能更好地适应目标场景的过程,其主要流程如下:数据准备:数据收集:根据目标任务收集高质量、有代表性的数据;数据预处理:对原始数据进行清洗,如去除噪声、重复项、不相关内容等。根据模型输入要求对数据进行格式化;数据划分:将数据分为训练集、验证集和测试集,为后续模型
- 【美团3面】大模型面试题详解:大模型使用几十条数据微调后为啥性能差的很多?
AI大模型-王哥
产品经理大模型学习AI大模型人工智能大模型大模型教程程序员
一个很有意思的回答:大模型的LossLandscape是由多个“Basin”(盆地)组成的,而不是一个平滑的曲面。如果微调(Fine-Tuning)的优化方向偏离了BasicCapacityBasin,就可能容易训崩掉,虽然训崩的概率不大。大模型(如LLM)在预训练阶段通过海量数据学习,优化出一个“基本能力盆地”(BasicCapacityBasin),这个Basin代表模型具备通用语言理解、生成
- 论文笔记:EMR-MERGING: Tuning-Free High-Performance Model Merging
UQI-LIUWJ
论文笔记论文阅读
2024neurips1intro随着HuggingFace、timm和torchvision等开源仓库的发展,预训练与微调模型的数量激增,这导致模型部署的存储和成本负担加重。多任务学习(MTL)通过联合训练多数据集来部分缓解上述问题,但它存在以下缺陷:(i)计算成本高;(ii)隐私数据限制导致数据不可获取因此,近年来出现了**模型融合(modelmerging)**方法,试图通过权重合并的方式绕
- 聊聊artemis的SlowConsumerReaperRunnable
go4it
序本文主要研究一下artemis的SlowConsumerReaperRunnableSlowConsumerPolicyactivemq-artemis-2.11.0/artemis-server/src/main/java/org/apache/activemq/artemis/core/settings/impl/SlowConsumerPolicy.javapublicenumSlowCo
- 大模型微调技术的详细解析及对比
老兵发新帖
人工智能大数据
以下是四种主流大模型微调技术的详细解析及对比,结合技术原理、适用场景与性能表现进行说明:1.Full-tuning(全量微调)核心原理:加载预训练模型的所有参数,用特定任务数据(通常为指令-回答对)继续训练,更新全部权重。相当于对模型整体知识结构进行重构。操作流程:加载预训练模型;用任务数据集(如分类文本)和优化目标(如最小化误差)训练;所有参数参与梯度更新。优势:模型充分学习任务特征,效果通常最
- 大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”
老兵发新帖
人工智能深度学习机器学习
大模型训练中的“训练阶段”(如Pre-training、SFT、RLHF等)与“微调技术”(如Full-tuning、Freeze-tuning、LoRA、QLoRA)是两类不同维度的概念,二者共同构成模型优化的完整流程。以下是二者的关系解析及技术对照:一、训练阶段的核心流程与目标预训练(Pre-training)目标:在无标注通用数据(如互联网文本)上训练模型,学习语言、视觉等通用特征。微调技术
- 基于小样本学习的图像分类综述
cdyyyyyyy
学习分类机器学习
目录引言基本概念小样本学习方法分类1、数据增强2、迁移学习3、元学习小样本学习主流方法1、基于度量的小样本学习2、基于Pretraining+FineTuning的方法3、基于元学习的小样本学习总结引言因为课程设计要求,所以进行了关于小样本学习的调研。目前小样本学习还是一个比较热门的研究,很多关于小样本学习的论文也陆续发表。本文只是一个概述,具体方法研究还有待深入。基本概念小样本学习(FSL:Fe
- 预取内存 和 非预取内存区别
zly8865372
macos
在PCIe(PCIExpress)设备中,预取内存(PrefetchableMemory)和非预取内存(Non-PrefetchableMemory)是两种不同的内存区域类型,主要区别在于它们的访问特性、使用场景以及硬件优化方式。以下是详细对比:1.定义与核心区别特性预取内存(Prefetchable)非预取内存(Non-Prefetchable)数据访问行为允许预读(Prefetch)和缓存,数
- ActiveMQ、RabbitMQ、RocketMQ、Kafka四种消息中间件分析介绍
马小屑
Kafkakafka
ActiveMQ、RabbitMQ、RocketMQ、Kafka四种消息中间件分析介绍我们从四种消息中间件的介绍到基本使用,以及高可用,消息重复性,消息丢失,消息顺序性能方面进行分析介绍!一、消息中间件的使用场景消息中间件的使用场景总结就是六个字:解耦、异步、削峰1.解耦如果我方系统A要与三方B系统进行数据对接,推送系统人员信息,通常我们会使用接口开发来进行。但是如果运维期间B系统进行了调整,或者
- 【PCIe】6: PCIe prefetchable和nonprefetchable
smartvxworks
PCIe高速总线专栏PCIePCI串行高速总线
目录1.什么是prefetchable2.什么是nonprefetchable3.PCIe中的使用1.什么是prefetchableprefetchable可预取指的是CPU可缓存它的内容并且对它做所有类型的优化;可预取性内存是指存储器空间的可预取能力。例如如果读操作没有副作用(即如同从RAM中读数据一样不会破坏数据),则称存储器空间可预取。2.什么是nonprefetchablenonprefe
- 论文阅读:LLaVA1.5:Improved Baselines with Visual Instruction Tuning
微风❤水墨
LLM&AIGC&VLPLLM
论文:https://arxiv.org/abs/2310.03744代码:https://github.com/haotian-liu/LLaVA#train微调:https://github.com/haotian-liu/LLaVA/blob/main/docs/Finetune_Custom_Data.md模型论文时间VisionEncoderVLAdapterProjectionLaye
- 14.3 FFT与PEFT终极对决:1%参数实现3倍速训练,显存暴降80%!
少林码僧
掌握先机!从0起步实战AI大模型微调打造核心竞争力人工智能机器学习大数据语言模型chatgptllama
以微调权重比例分类:FFTvsPEFT深度解析在大模型微调领域,参数调整比例直接决定训练效率与模型性能的平衡。本小节将深入解析全参数微调(FullFine-Tuning,FFT)与参数高效微调(Parameter-EfficientFine-Tuning,PEFT)的核心差异,并通过具体技术方案对比和实战代码示例揭示其工程应用场景。一、FFT与PEFT技术对比矩阵
- 【大语言模型基础】GPT(Generative Pre-training )生成式无监督预训练模型原理
前言ELMo:将上下文当作特征,但是无监督的语料和我们真实的语料还是有区别的,不一定符合我们特定的任务,是一种双向的特征提取。OpenAIGPT:通过transformerdecoder学习出来一个语言模型,不是固定的,通过任务fine-tuning,用transfomer代替ELMo的LSTM。OpenAIGPT其实就是缺少了encoder的transformer:当然也没了encoder与de
- MTK Camera 架构概览:Imagiq ISP 关键模块解析与工程实战分享
观熵
影像技术全景图谱:架构调优与实战架构接口隔离原则影像Camera
MTKCamera架构概览:ImagiqISP关键模块解析与工程实战分享关键词MTKCamera、ImagiqISP、联发科相机架构、AE/AWB/AF模块、3A控制、RAWDomain、SensorTuning、工程调试、影像信号处理摘要随着联发科平台在中高端手机市场逐步占据重要地位,其影像能力的竞争力也显著提升。ImagiqISP作为MTK平台核心影像处理模块,已支持多通道RAW输入、高速多帧
- SFT:大型语言模型专业化定制的核心技术体系——原理、创新与应用全景
大千AI助手
人工智能Python#OTHER语言模型人工智能自然语言处理深度学习机器学习微调SFT
本文由「大千AI助手」原创发布,专注用真话讲AI,回归技术本质。拒绝神话或妖魔化。搜索「大千AI助手」关注我,一起撕掉过度包装,学习真实的AI技术!以下基于权威期刊、会议论文及技术报告,对监督微调(SupervisedFine-Tuning,SFT)的技术框架、创新方法与实际应用进行系统梳理:一、核心定义与技术原理基本概念SFT是在预训练语言模型(如GPT、BERT)基础上,利用标注数据集对模型进
- HW prefetcher之CDP(Content-Directed Data Prefetching)
Chip Design
xPUChipDesignCPUGEM5
CDP是Content-DirectedDataPrefetching的缩写,它基于RobertCooksey和StephanJourdan提出的"Stateless,Content-DirectedDataPrefetchingMechanism"论文实现。是一种内容导向的数据预取机制,CDP通过分析内存中的数据内容来识别可能的指针,当识别到指针时,它会预取指针指向的内存地址。CDP使用VPN表
- 硬件预取的几个问题 1
1.硬件预取的定义和目标是什么?答案:硬件预取是CPU在程序执行前自动预测并加载可能使用的数据到缓存中的技术,目标是减少缓存未命中带来的延迟,提升指令吞吐量。2.硬件预取与软件预取的核心区别?答案:硬件预取由CPU内部逻辑自动触发,透明且通用;软件预取需程序员显式插入指令(如prefetch),可针对特定场景优化,但依赖代码适配。3.预取算法的主要分类?答案:分为规则驱动型(如顺序、步长预取)和机
- 【论文阅读】AdaCtrl: Towards Adaptive and Controllable Reasoning via Difficulty-Aware Budgeting
quintus0505
LLM论文阅读语言模型
AdaCtrl:TowardsAdaptiveandControllableReasoningviaDifficulty-AwareBudgeting3Method3.1长度触发标签作为控制接口(Length-TriggerTagsasControllingInterface)3.2冷启动微调(Cold-startfine-tuning)3.3难度感知的强化学习框架(Difficulty-awar
- 语言大模型综述
Paper:ASurveyofLargelanguageModels目录Paper:ASurveyofLargelanguageModels综述概要LLM关键技术规模定律(ScalingLaws)预训练与微调对齐调优(AlignmentTuning)外部工具集成GPT系列模型的技术演进模型检查点和APIPre-Training数据准备和处理数据准备数据预处理数据调度架构EmergentArchit
- Tuning Language Models by Proxy
樱花的浪漫
对抗生成网络与动作识别强化学习因果推断大模型与智能体人工智能机器学习深度学习自然语言处理计算机视觉神经网络
TuningLanguageModelsbyProxyhttps://arxiv.org/html/2401.08565v41.概述尽管大型预训练语言模型的通用能力越来越强,但它们仍然可以从额外的微调中受益,以更好地实现所需的行为。例如,它们通常被微调以遵循指令(Ouyang等人,2022年)、特定的兴趣领域(Gururangan等人,2020年)或特定任务(Raffel等人,2020年)。然而,
- 【零基础学AI】第29讲:BERT模型实战 - 情感分析
1989
0基础学AIbert人工智能深度学习神经网络cnnpython自然语言处理
本节课你将学到BERT模型的核心原理与优势HuggingFaceTransformers库的BERT接口使用情感分析任务的完整实现流程模型微调(Fine-tuning)技巧开始之前环境要求Python3.8+需要安装的包:pipinstalltorchtransformersdatasetspandastqdmGPU推荐(可加速训练)前置知识第28讲Transformer基础基本PyTorch使用
- 深度模型训练,加速数据读取遇到显卡跑不满的问题
不是吧这都有重名
遇到的问题llama人工智能LLMpython
实测在pytorch的dataloader中使用prefetch_factor参数的时候,如果数据在机械硬盘上显卡始终是跑不满的,瓶颈在数据预加载速度上,当数据放在固态硬盘的时候就可以跑满。问题排查过程:一直在跑模型,但是数据量比较大,之前有段时间还是比较头疼显卡跑不满的。后来直接用钞能力,加了内存条,将数据缓存后一次性读到内存中终于可以跑满了,然后后面就一直没管这个了,唯一的缺点就是每次开始训练
- 模型微调方法Prefix-Tuning
ballball~~
大模型人工智能算法大数据
简介:个人学习分享,如有错误,欢迎批评指正。随着大规模预训练语言模型(如GPT系列、BERT等)的广泛应用,如何高效、经济地针对特定任务对这些模型进行微调(Fine-Tuning)成为研究热点。传统的微调方法通常需要调整模型的大量参数,导致计算资源消耗大、适应新任务的速度慢。为了解决这一问题,Prefix-Tuning(前缀调优)作为一种高效的微调技术被提出,旨在通过引入少量可训练的前缀参数,达到
- 四种微调技术详解:SFT 监督微调、LoRA 微调、P-tuning v2、Freeze 监督微调方法
当谈到人工智能大语言模型的微调技术时,我们进入了一个令人兴奋的领域。这些大型预训练模型,如GPT-3、BERT和T5,拥有卓越的自然语言处理能力,但要使它们在特定任务上表现出色,就需要进行微调,以使其适应特定的数据和任务需求。在这篇文章中,我们将深入探讨四种不同的人工智能大语言模型微调技术:SFT监督微调、LoRA微调方法、P-tuningv2微调方法和Freeze监督微调方法。第一部分:SFT监
- 顶会新方向!14篇图神经网络(GNN)最新顶会论文汇总!(含2024)
AI科研技术派
神经网络人工智能深度学习
图神经网络(GNN)是深度学习领域中备受关注的前沿课题,它在处理图结构数据方面展现出了强大的潜力,随着研究的不断深入,越来越多的优秀论文在顶级学术会议上涌现。今天就给大家整理了14篇顶会中发表的图神经网络优质论文,一起看看这方面的最新研究成果吧!AAAI20241、Fine-tuningGraphNeuralNetworksbyPreservingGraphGenerativePatterns通过
- 大规模预训练语言模型的参数高效微调
人工智能咨询培训老师叶梓转载标明出处大规模预训练语言模型(PLMs)在特定下游任务上的微调和存储成本极高,这限制了它们在实际应用中的可行性。为了解决这一问题,来自清华大学和北京人工智能研究院的研究团队探索了一种优化模型中一小部分参数的方法,同时保持其他参数不变,以大幅降低计算和存储成本。研究团队提出了“delta-tuning”这一概念,将优化的参数部分称为“delta”,即在训练过程中被“改变”
- ios内付费
374016526
ios内付费
近年来写了很多IOS的程序,内付费也用到不少,使用IOS的内付费实现起来比较麻烦,这里我写了一个简单的内付费包,希望对大家有帮助。
具体使用如下:
这里的sender其实就是调用者,这里主要是为了回调使用。
[KuroStoreApi kuroStoreProductId:@"产品ID" storeSender:self storeFinishCallBa
- 20 款优秀的 Linux 终端仿真器
brotherlamp
linuxlinux视频linux资料linux自学linux教程
终端仿真器是一款用其它显示架构重现可视终端的计算机程序。换句话说就是终端仿真器能使哑终端看似像一台连接上了服务器的客户机。终端仿真器允许最终用户用文本用户界面和命令行来访问控制台和应用程序。(LCTT 译注:终端仿真器原意指对大型机-哑终端方式的模拟,不过在当今的 Linux 环境中,常指通过远程或本地方式连接的伪终端,俗称“终端”。)
你能从开源世界中找到大量的终端仿真器,它们
- Solr Deep Paging(solr 深分页)
eksliang
solr深分页solr分页性能问题
转载请出自出处:http://eksliang.iteye.com/blog/2148370
作者:eksliang(ickes) blg:http://eksliang.iteye.com/ 概述
长期以来,我们一直有一个深分页问题。如果直接跳到很靠后的页数,查询速度会比较慢。这是因为Solr的需要为查询从开始遍历所有数据。直到Solr的4.7这个问题一直没有一个很好的解决方案。直到solr
- 数据库面试题
18289753290
面试题 数据库
1.union ,union all
网络搜索出的最佳答案:
union和union all的区别是,union会自动压缩多个结果集合中的重复结果,而union all则将所有的结果全部显示出来,不管是不是重复。
Union:对两个结果集进行并集操作,不包括重复行,同时进行默认规则的排序;
Union All:对两个结果集进行并集操作,包括重复行,不进行排序;
2.索引有哪些分类?作用是
- Android TV屏幕适配
酷的飞上天空
android
先说下现在市面上TV分辨率的大概情况
两种分辨率为主
1.720标清,分辨率为1280x720.
屏幕尺寸以32寸为主,部分电视为42寸
2.1080p全高清,分辨率为1920x1080
屏幕尺寸以42寸为主,此分辨率电视屏幕从32寸到50寸都有
适配遇到问题,已1080p尺寸为例:
分辨率固定不变,屏幕尺寸变化较大。
如:效果图尺寸为1920x1080,如果使用d
- Timer定时器与ActionListener联合应用
永夜-极光
java
功能:在控制台每秒输出一次
代码:
package Main;
import javax.swing.Timer;
import java.awt.event.*;
public class T {
private static int count = 0;
public static void main(String[] args){
- Ubuntu14.04系统Tab键不能自动补全问题解决
随便小屋
Ubuntu 14.04
Unbuntu 14.4安装之后就在终端中使用Tab键不能自动补全,解决办法如下:
1、利用vi编辑器打开/etc/bash.bashrc文件(需要root权限)
sudo vi /etc/bash.bashrc
接下来会提示输入密码
2、找到文件中的下列代码
#enable bash completion in interactive shells
#if
- 学会人际关系三招 轻松走职场
aijuans
职场
要想成功,仅有专业能力是不够的,处理好与老板、同事及下属的人际关系也是门大学问。如何才能在职场如鱼得水、游刃有余呢?在此,教您简单实用的三个窍门。
第一,多汇报
最近,管理学又提出了一个新名词“追随力”。它告诉我们,做下属最关键的就是要多请示汇报,让上司随时了解你的工作进度,有了新想法也要及时建议。不知不觉,你就有了“追随力”,上司会越来越了解和信任你。
第二,勤沟通
团队的力
- 《O2O:移动互联网时代的商业革命》读书笔记
aoyouzi
读书笔记
移动互联网的未来:碎片化内容+碎片化渠道=各式精准、互动的新型社会化营销。
O2O:Online to OffLine 线上线下活动
O2O就是在移动互联网时代,生活消费领域通过线上和线下互动的一种新型商业模式。
手机二维码本质:O2O商务行为从线下现实世界到线上虚拟世界的入口。
线上虚拟世界创造的本意是打破信息鸿沟,让不同地域、不同需求的人
- js实现图片随鼠标滚动的效果
百合不是茶
JavaScript滚动属性的获取图片滚动属性获取页面加载
1,获取样式属性值
top 与顶部的距离
left 与左边的距离
right 与右边的距离
bottom 与下边的距离
zIndex 层叠层次
例子:获取左边的宽度,当css写在body标签中时
<div id="adver" style="position:absolute;top:50px;left:1000p
- ajax同步异步参数async
bijian1013
jqueryAjaxasync
开发项目开发过程中,需要将ajax的返回值赋到全局变量中,然后在该页面其他地方引用,因为ajax异步的原因一直无法成功,需将async:false,使其变成同步的。
格式:
$.ajax({ type: 'POST', ur
- Webx3框架(1)
Bill_chen
eclipsespringmaven框架ibatis
Webx是淘宝开发的一套Web开发框架,Webx3是其第三个升级版本;采用Eclipse的开发环境,现在支持java开发;
采用turbine原型的MVC框架,扩展了Spring容器,利用Maven进行项目的构建管理,灵活的ibatis持久层支持,总的来说,还是一套很不错的Web框架。
Webx3遵循turbine风格,velocity的模板被分为layout/screen/control三部
- 【MongoDB学习笔记五】MongoDB概述
bit1129
mongodb
MongoDB是面向文档的NoSQL数据库,尽量业界还对MongoDB存在一些质疑的声音,比如性能尤其是查询性能、数据一致性的支持没有想象的那么好,但是MongoDB用户群确实已经够多。MongoDB的亮点不在于它的性能,而是它处理非结构化数据的能力以及内置对分布式的支持(复制、分片达到的高可用、高可伸缩),同时它提供的近似于SQL的查询能力,也是在做NoSQL技术选型时,考虑的一个重要因素。Mo
- spring/hibernate/struts2常见异常总结
白糖_
Hibernate
Spring
①ClassNotFoundException: org.aspectj.weaver.reflect.ReflectionWorld$ReflectionWorldException
缺少aspectjweaver.jar,该jar包常用于spring aop中
②java.lang.ClassNotFoundException: org.sprin
- jquery easyui表单重置(reset)扩展思路
bozch
formjquery easyuireset
在jquery easyui表单中 尚未提供表单重置的功能,这就需要自己对其进行扩展。
扩展的时候要考虑的控件有:
combo,combobox,combogrid,combotree,datebox,datetimebox
需要对其添加reset方法,reset方法就是把初始化的值赋值给当前的组件,这就需要在组件的初始化时将值保存下来。
在所有的reset方法添加完毕之后,就需要对fo
- 编程之美-烙饼排序
bylijinnan
编程之美
package beautyOfCoding;
import java.util.Arrays;
/*
*《编程之美》的思路是:搜索+剪枝。有点像是写下棋程序:当前情况下,把所有可能的下一步都做一遍;在这每一遍操作里面,计算出如果按这一步走的话,能不能赢(得出最优结果)。
*《编程之美》上代码有很多错误,且每个变量的含义令人费解。因此我按我的理解写了以下代码:
*/
- Struts1.X 源码分析之ActionForm赋值原理
chenbowen00
struts
struts1在处理请求参数之前,首先会根据配置文件action节点的name属性创建对应的ActionForm。如果配置了name属性,却找不到对应的ActionForm类也不会报错,只是不会处理本次请求的请求参数。
如果找到了对应的ActionForm类,则先判断是否已经存在ActionForm的实例,如果不存在则创建实例,并将其存放在对应的作用域中。作用域由配置文件action节点的s
- [空天防御与经济]在获得充足的外部资源之前,太空投资需有限度
comsci
资源
这里有一个常识性的问题:
地球的资源,人类的资金是有限的,而太空是无限的.....
就算全人类联合起来,要在太空中修建大型空间站,也不一定能够成功,因为资源和资金,技术有客观的限制....
&
- ORACLE临时表—ON COMMIT PRESERVE ROWS
daizj
oracle临时表
ORACLE临时表 转
临时表:像普通表一样,有结构,但是对数据的管理上不一样,临时表存储事务或会话的中间结果集,临时表中保存的数据只对当前
会话可见,所有会话都看不到其他会话的数据,即使其他会话提交了,也看不到。临时表不存在并发行为,因为他们对于当前会话都是独立的。
创建临时表时,ORACLE只创建了表的结构(在数据字典中定义),并没有初始化内存空间,当某一会话使用临时表时,ORALCE会
- 基于Nginx XSendfile+SpringMVC进行文件下载
denger
应用服务器Webnginx网络应用lighttpd
在平常我们实现文件下载通常是通过普通 read-write方式,如下代码所示。
@RequestMapping("/courseware/{id}")
public void download(@PathVariable("id") String courseID, HttpServletResp
- scanf接受char类型的字符
dcj3sjt126com
c
/*
2013年3月11日22:35:54
目的:学习char只接受一个字符
*/
# include <stdio.h>
int main(void)
{
int i;
char ch;
scanf("%d", &i);
printf("i = %d\n", i);
scanf("%
- 学编程的价值
dcj3sjt126com
编程
发一个人会编程, 想想以后可以教儿女, 是多么美好的事啊, 不管儿女将来从事什么样的职业, 教一教, 对他思维的开拓大有帮助
像这位朋友学习:
http://blog.sina.com.cn/s/articlelist_2584320772_0_1.html
VirtualGS教程 (By @林泰前): 几十年的老程序员,资深的
- 二维数组(矩阵)对角线输出
飞天奔月
二维数组
今天在BBS里面看到这样的面试题目,
1,二维数组(N*N),沿对角线方向,从右上角打印到左下角如N=4: 4*4二维数组
{ 1 2 3 4 }
{ 5 6 7 8 }
{ 9 10 11 12 }
{13 14 15 16 }
打印顺序
4
3 8
2 7 12
1 6 11 16
5 10 15
9 14
13
要
- Ehcache(08)——可阻塞的Cache——BlockingCache
234390216
并发ehcacheBlockingCache阻塞
可阻塞的Cache—BlockingCache
在上一节我们提到了显示使用Ehcache锁的问题,其实我们还可以隐式的来使用Ehcache的锁,那就是通过BlockingCache。BlockingCache是Ehcache的一个封装类,可以让我们对Ehcache进行并发操作。其内部的锁机制是使用的net.
- mysqldiff对数据库间进行差异比较
jackyrong
mysqld
mysqldiff该工具是官方mysql-utilities工具集的一个脚本,可以用来对比不同数据库之间的表结构,或者同个数据库间的表结构
如果在windows下,直接下载mysql-utilities安装就可以了,然后运行后,会跑到命令行下:
1) 基本用法
mysqldiff --server1=admin:12345
- spring data jpa 方法中可用的关键字
lawrence.li
javaspring
spring data jpa 支持以方法名进行查询/删除/统计。
查询的关键字为find
删除的关键字为delete/remove (>=1.7.x)
统计的关键字为count (>=1.7.x)
修改需要使用@Modifying注解
@Modifying
@Query("update User u set u.firstna
- Spring的ModelAndView类
nicegege
spring
项目中controller的方法跳转的到ModelAndView类,一直很好奇spring怎么实现的?
/*
* Copyright 2002-2010 the original author or authors.
*
* Licensed under the Apache License, Version 2.0 (the "License");
* yo
- 搭建 CentOS 6 服务器(13) - rsync、Amanda
rensanning
centos
(一)rsync
Server端
# yum install rsync
# vi /etc/xinetd.d/rsync
service rsync
{
disable = no
flags = IPv6
socket_type = stream
wait
- Learn Nodejs 02
toknowme
nodejs
(1)npm是什么
npm is the package manager for node
官方网站:https://www.npmjs.com/
npm上有很多优秀的nodejs包,来解决常见的一些问题,比如用node-mysql,就可以方便通过nodejs链接到mysql,进行数据库的操作
在开发过程往往会需要用到其他的包,使用npm就可以下载这些包来供程序调用
&nb
- Spring MVC 拦截器
xp9802
spring mvc
Controller层的拦截器继承于HandlerInterceptorAdapter
HandlerInterceptorAdapter.java 1 public abstract class HandlerInterceptorAdapter implements HandlerIntercep