Spring AI 介绍

文章来源:AI 概念 (AI Concepts) _ Spring AI1.0.0-SNAPSHOT中文文档(官方文档中文翻译)|Spring 教程 —— CADN开发者文档中心 

本节介绍 Spring AI 使用的核心概念。我们建议仔细阅读它,以了解 Spring AI 是如何实现的。

   模型

AI 模型是旨在处理和生成信息的算法,通常模仿人类的认知功能。 通过从大型数据集中学习模式和见解,这些模型可以进行预测、文本、图像或其他输出,从而增强跨行业的各种应用程序。

有许多不同类型的 AI 模型,每种模型都适用于特定的使用案例。 虽然 ChatGPT 及其生成式 AI 功能通过文本输入和输出吸引了用户,但许多模型和公司都提供了不同的输入和输出。 在 ChatGPT 之前,许多人对 Midjourney 和 Stable Diffusion 等文本到图像生成模型着迷。

下表根据模型的输入和输出类型对多个模型进行分类:

Spring AI 介绍_第1张图片

Spring AI 目前支持将输入和输出处理为语言、图像和音频的模型。 上表中的最后一行接受文本作为输入并输出数字,通常称为嵌入文本,表示 AI 模型中使用的内部数据结构。 Spring AI 支持嵌入以支持更高级的用例。

像 GPT 这样的模型的不同之处在于它们的预训练性质,如 GPT 中的“P”所示——聊天生成预训练转换器。 此预训练功能将 AI 转换为通用的开发人员工具,不需要广泛的机器学习或模型训练背景。

   提示

提示是基于语言的输入的基础,这些输入可指导 AI 模型生成特定输出。 对于熟悉 ChatGPT 的人来说,提示可能看起来只是在发送到 API 的对话框中输入的文本。 然而,它包含的远不止于此。 在许多 AI 模型中,提示的文本不仅仅是一个简单的字符串。

ChatGPT 的 API 在一个提示中有多个文本输入,每个文本输入都分配了一个角色。 例如,有 system 角色,它告诉模型如何行为并设置交互的上下文。 还有 user role,通常是来自用户的 Importing。

制作有效的提示既是一门艺术,也是一门科学。 ChatGPT 专为人类对话而设计。 这与使用 SQL 之类的东西来 “ask a question” 完全不同。 一个人必须与 AI 模型进行交流,类似于与另一个人交谈。

正是这种交互方式的重要性,以至于“Prompt Engineering”一词已经成为一门独立的学科。 有一系列新兴的技术可以提高提示的有效性。 投入时间制作提示可以大大提高结果输出。

分享提示已成为一种公共实践,并且正在积极地进行关于这一主题的学术研究。 例如,创建有效的提示(例如,与 SQL 形成对比)是多么违反直觉,最近的一篇研究论文发现,您可以使用的最有效的提示之一以短语“深呼吸并逐步完成此工作”开头。 这应该可以告诉你为什么语言如此重要。 我们还不完全了解如何最有效地利用这项技术的先前迭代,例如 ChatGPT 3.5,更不用说正在开发的新版本了。

你可能感兴趣的:(人工智能,spring,chatgpt)