- 2025最新Mybatis-plus教程(二)
三、CRUD(一)BaseMapper接口方法介绍BaseMapper中提供了crud方法,具体方法如下://插入一条记录intinsert(Tentity);//根据entity条件,删除记录intdelete(@Param(Constants.WRAPPER)Wrapperwrapper);//删除(根据ID批量删除)intdeleteBatchIds(@Param(Constants.COL
- MyBatisPlus 批量添加
文章目录现状优化效果报错现状一般来说,批量插入可以使用MyBatisPlus中ServiceImpl自带的方法saveBatch打开sql日志,application.yml添加配置,mapper-locations配置mapper路径mybatis-plus:configuration:log-impl:org.apache.ibatis.logging.stdout.StdOutImpl#开启
- 3D并行与4D并行
3D并行3D并行通常指的是将以下三种并行策略结合起来:D1:数据并行(DataParallelism)D2:张量并行(TensorParallelism)D3:流水线并行(PipelineParallelism)各个“D”的含义及详细讲解1.数据并行(DataParallelism)含义:在数据并行中,每个设备(或一组设备)都持有完整的模型副本。训练数据集被分成多个批次(mini-batches)
- 第十四章:AI的数据“集装箱”:彻底搞懂Tensor的Batch与维度
爱分享的飘哥
AI新纪元:120日觉醒计划TensorPyTorchBatchSize数据处理AI基础深度学习教程
AI数据集中箱前言:为什么AI从不“零售”,总是“批发”?1:Batch(批次)——GPU的“灵魂伴侣”1.1单个处理vs.批量处理:CPU与GPU的思维差异1.2DataLoader:PyTorch的“自动化装箱员”2:维度的语言——破译[B,L,D]的含义2.1[L,D]:一个句子的“二维画像”2.2[B,L,D]:一批句子的“三维魔方”2.3用代码直观感受维度的增加3:追踪Tensor的“变
- Transformer Masked loss原理精讲及其PyTorch逐行实现
MaskedLoss的核心原理是:在计算损失函数时,只考虑真实有意义的词元(token),而忽略掉为了数据对齐而填充的无意义的填充词元(paddingtoken)。这是重要的技术,可以确保模型专注于学习有意义的任务,并得到一个正确的性能评估。1.原理精讲为什么需要MaskedLoss?在训练神经网络时,我们通常会用一个批次(batch)的数据进行训练,而不是一次只用一个样本。对于自然语言处理任务,
- 基于深度学习的胸部 X 光图像肺炎分类系统(二)
本文主要说明神经网络的构建,共21个层级defbuild_model(input_shape): model=models.Sequential([ layers.Conv2D(32,(3,3),activation='relu',input_shape=input_shape), layers.BatchNormalization(), layers.Ma
- 作业11.23
zhuqifan0412
网络
syssystem-viewEntersystemview,returnuserviewwithCtrl+Z.[Huawei]vlanba[Huawei]vlanbatch24Info:Thisoperationmaytakeafewseconds.Pleasewaitforamoment...done.[Huawei]Nov23202220:22:23-08:00HuaweiDS/4/DATAS
- 基础NLP | 01 机器学习 深度学习基础介绍
是娜个二叉树!
NLP自然语言处理机器学习深度学习
文章目录机器学习简介有监督学习无监督学习一般流程常用概念深度学习简介隐含层/中间层例子and流程如果想要猜测的又快又准,调整的方向有哪些?随机初始化损失函数导数与梯度梯度下降优化器MiniBatchepoch流程深度学习的基本思想机器学习简介有监督学习核心目标:建立一个模型(函数),来描述输入(X)和输出(Y)之间的映射关系价值:对于新的输入,通过模型给出预测的输出要点:有一定数量的训练样本输入和
- ValueError: Expected more than 1 value per channel when training, got input size torch.Size([1, 384]
我是如此相信_
人工智能深度学习
这个错误通常发生在使用PyTorch训练神经网络时,输入数据维度不符合预期,不能batch_size整除。可能是输入的数据有剩余但不足以达到batch_size所导致的查阅资料发现:在torch.utils.data这个包中,DataLoader类下有一参数为:drop_last–settoTruetodropthelastincompletebatch,ifthedatasetsizeisnot
- 基于 Spring Batch 和 XXL-Job 的批处理任务实现
躲在没风的地方
javaspringbootspringbatchjava
springbatchspringinteger批处理作业1添加依赖org.springframework.batchspring-batch-integration你的SpringBatch版本org.springframework.batchspring-batch-core你的SpringBatch版本org.springframework.integrationspring-integra
- SAP中BDC的模式
小赫不吃姜
abapsap开发语言
SAPBDC(BatchDataCommunication)中的执行模式在SAP的BDC技术中,有三种主要的执行模式,它们决定了事务如何被处理以及错误如何被管理:1.A(DisplayMode)-显示模式●含义:系统会显示每个屏幕,但不会自动处理●特点:○允许用户手动输入或确认数据○主要用于测试和调试BDC会话○不会实际更新数据库●适用场景:BDC程序开发和测试阶段2.E(ErrorMode)-错
- Epoch
老兵发新帖
人工智能
在深度学习和机器学习中,Epoch(轮次或周期)是一个核心训练概念,指模型在整个训练数据集上完成一次完整遍历的过程。以下是关于Epoch的详细解析:一、核心定义基本含义Epoch表示模型将所有训练数据完整学习一次的过程。例如:若训练集有10,000个样本,则1个Epoch即模型用这10,000个样本训练一轮。与相关概念的关系Batch(批次):数据集被分割成的小组(如每批32个样本)。Iterat
- UE5 Microsoft.MakeFile.targets(44, 5): [MSB3073] 代码为6.报错解决
Microsoft.MakeFile.targets(44,5):[MSB3073]命令“E:\EpicGame\UE_5.1\Engine\Build\BatchFiles\Build.batAAAAAEditorWin64Development-Project=“D:\UE4Game\AAAAA\AAAAA.uproject”-WaitMutex-FromMsBuild”已退出,代码为6。出错
- 绿色免装 OFD 批量打印小工具:快捷键搞定 OFD 打印,解决右键无选项难题
维度软件库
电脑开源软件测试工具
各位办公小能手们!今天咱来聊聊批量打印工具,这玩意儿可太牛啦!软件下载地址安装包批量打印工具就是那种能高效处理好多文件打印任务的软件。它的核心功能超厉害,只要一键操作或者自动化流程,就能批量打印PDF、Word、Excel、CAD图纸、OFD这些不同格式的文件。你就不用一个一个打开文件手动打印啦,能省老多事儿,打印效率蹭蹭往上涨!像PrintConductor、BatchPrintPro这种通用文
- mac的m芯片上跑cuda程序
xinxuann
macos
config里parser.add_argument('--device',type=str,default='mps')main里device=torch.device(cfg['device'])train里x_batch=x_batch.astype('float32')y_batch=y_batch.astype('float32')aux_batch=aux_batch.astype('
- flink sql读hive catalog数据,将string类型的时间戳数据排序后写入kafka,如何保障写入kafka的数据是有序的
fzip
Flinkflinksqlhive
在FlinkSQL中,要确保从Hive读取的STRING类型时间戳数据排序后有序写入Kafka,需要结合批处理模式、时间类型转换、单分区写入和Kafka生产者配置。以下是完整解决方案:一、核心解决方案1.批处理模式+全局排序将作业设置为批处理模式,并对字符串时间戳进行类型转换后排序:--设置为批处理模式(关键!)SET'execution.runtime-mode'='batch';--从Hive
- Java框架入门——SpringBoot框架
初尘屿风
java初尘屿风SpringBootjavaspringspringbootmavenvue
文章目录前言一、SpringBoot是什么?二、请求与响应介绍二、springBoot之helloWorld总结前言Spring都包含了哪些部分呢?主要包含SpringBoot、SpringFramework、SpringData、SpringCloud、SpringCloudDataFlow、SpringSecurity、SpringBatch等众多项目。在spring的官网中对其有详细的介绍。
- sbatch: error: Batch script contains DOS line breaks (\r\n)
爱听许嵩歌
编程debug问题batchmatlabslurm
问题:在使用超算时,提交脚本出现batch:error:BatchscriptcontainsDOSlinebreaks(\r\n)sbatch:error:insteadofexpectedUNIXlinebreaks(\n)原因:dos下的换行和Unix是不一样的:windows中\r\n表示换行,linux等使用\n换行。差异:Windows系统下文本文件的换行符是:回车+换行CR/LF即\
- 【深度学习基础】PyTorch中model.eval()与with torch.no_grad()以及detach的区别与联系?
目录1.核心功能对比2.使用场景对比3.区别与联系4.典型代码示例(1)模型评估阶段(2)GAN训练中的判别器更新(3)提取中间特征5.关键区别总结6.常见问题与解决方案(1)问题:推理阶段显存爆掉(2)问题:Dropout/BatchNorm行为异常(3)问题:中间张量意外参与梯度计算7.最佳实践8.总结以下是PyTorch中model.eval()、withtorch.no_grad()和.d
- DataLoader
在PyTorch中,DataLoader是torch.utils.data模块中的一个重要类,用于将数据集包装成可迭代对象,在训练和测试模型时提供了高效、便捷的数据加载和批处理功能。主要作用:批量处理数据:将数据集中的样本整理成一个个批次(batch),方便模型进行一次处理多个样本,加速训练过程。例如,设置batch_size=32,就会每次从数据集中取出32个样本组成一个批次。数据打乱:在训练过
- 第八周 tensorflow实现猫狗识别
降花绘
365天深度学习tensorflow系列tensorflow深度学习人工智能
本文为365天深度学习训练营内部限免文章(版权归K同学啊所有)**参考文章地址:[TensorFlow入门实战|365天深度学习训练营-第8周:猫狗识别(训练营内部成员可读)]**作者:K同学啊文章目录一、本周学习内容:1、自己搭建VGG16网络2、了解model.train_on_batch()3、了解tqdm,并使用tqdm实现可视化进度条二、前言三、电脑环境四、前期准备1、导入相关依赖项2、
- lstm 输入数据维度_keras中关于输入尺寸、LSTM的stateful问题
weixin_39856269
lstm输入数据维度
补充:return_sequence,return_state都是针对一个时间切片(步长)内的h和c状态,而stateful是针对不同的batch之间的。多层LSTM需要设置return_sequence=True,后面再设置return_sequence=False.最近在学习使用keras搭建LSTM的时候,遇到了一些不明白的地方。有些搞懂了,有些还没有搞懂。现在记下来,因为很快就会忘记!-_
- torch 填充补齐
AI算法网奇
python宝典python
目录行填充补齐1.填充长度(Padding)2.掩码(Masking)3.排序优化(可选)行填充补齐importtorchfromtorch.nn.utils.rnnimportpad_sequence#原始序列(每个序列是二维张量,行数不同)batch_data=[torch.tensor([[1,2,3]])#1行#torch.tensor([[4,5,6],[7,8,9]]),#2行#tor
- lstm 数据输入问题
AI算法网奇
python基础lstm人工智能
lstm我有20*6条数据,20个样本,每个样本6条历史数据,每条数据有5个值,我送给网络输入时应该是20*6*5还是6*20*5你的数据是:20个样本(batchsize=20)每个样本有6条历史数据(sequencelength=6)每条数据有5个值(inputsize=5)✅正确的输入形状是:(20,6,5)#即batch_size=20,seq_len=6,input_size=5前提是你
- OpenWebUI(8)源码学习-后端utils/telemetry追踪遥测模块
目录目录结构说明`constants.py`核心作用:主要功能:示例代码片段:`exporters.py`核心作用:主要类:`LazyBatchSpanProcessor`特点:技术亮点:`instrumentors.py`核心作用:插桩对象包括:钩子函数(Hooks):Instrumentor类:插桩流程:`setup.py`核心作用:主要功能:典型调用方式:✨总体架构与价值技术亮点总结✅开发建
- 探索Spring Batch的终极指南:高效批处理解决方案
水照均Farrah
探索SpringBatch的终极指南:高效批处理解决方案def-guide-spring-batchSourceCodeforTheDefinitiveGuidetoSpringBatchbyMichaelMinella项目地址:https://gitcode.com/gh_mirrors/de/def-guide-spring-batch项目介绍欢迎来到《TheDefinitiveGuideto
- huggingface 笔记: Trainer
UQI-LIUWJ
笔记人工智能
Trainer是一个为Transformers中PyTorch模型设计的完整训练与评估循环只需将模型、预处理器、数据集和训练参数传入Trainer,其余交给它处理,即可快速开始训练自动处理以下训练流程:根据batch计算loss使用backward()计算梯度根据梯度更新权重重复上述流程直到达到指定的epoch数1配置TrainingArguments使用TrainingArguments定义训练
- 科研:diffusion生成MNIST程序实现
Menger_Wen
科研:diffusion人工智能机器学习stablediffusionpython
科研:diffusion生成MNIST程序实现第一部分:填写部分的详细解释1.`diffusion.py`中的`batch_extend_like`方法2.`diffusion.py`中的`ode_reverse`方法3.`sde_schedule.py`中的`sde_forward`方法第二部分:逐行解释两个程序1.`diffusion.py`(Diffusion类)`__init__`方法`b
- PagedAttention和Continuous Batching
流浪大人
大模型深度学习人工智能机器学习
PagedAttention是什么PagedAttention是一种用于优化Transformer架构中注意力机制的技术,主要用于提高大语言模型在推理阶段的效率,特别是在处理长序列数据时能有效减少内存碎片和提高内存利用率。它借鉴了操作系统中虚拟内存分页机制的思想。工作原理传统注意力机制的局限性:传统的注意力机制在处理长序列时,需要为每个位置计算注意力得分并存储中间结果,这会导致内存占用随着序列长度
- Github 2024-05-07 开源项目日报 Tp10
老孙正经胡说
github开源Github趋势分析开源项目PythonGolang
根据GithubTrendings的统计,今日(2024-05-07统计)共有10个项目上榜。根据开发语言中项目的数量,汇总情况如下:开发语言项目数量TypeScript项目4JupyterNotebook项目2Python项目1Batchfile项目1非开发语言项目1Java项目1HTML项目1C#项目1从零开始构建你喜爱的技术创建周期:2156天Star数量:253338个Fork数量:240
- apache 安装linux windows
墙头上一根草
apacheinuxwindows
linux安装Apache 有两种方式一种是手动安装通过二进制的文件进行安装,另外一种就是通过yum 安装,此中安装方式,需要物理机联网。以下分别介绍两种的安装方式
通过二进制文件安装Apache需要的软件有apr,apr-util,pcre
1,安装 apr 下载地址:htt
- fill_parent、wrap_content和match_parent的区别
Cb123456
match_parentfill_parent
fill_parent、wrap_content和match_parent的区别:
1)fill_parent
设置一个构件的布局为fill_parent将强制性地使构件扩展,以填充布局单元内尽可能多的空间。这跟Windows控件的dockstyle属性大体一致。设置一个顶部布局或控件为fill_parent将强制性让它布满整个屏幕。
2) wrap_conte
- 网页自适应设计
天子之骄
htmlcss响应式设计页面自适应
网页自适应设计
网页对浏览器窗口的自适应支持变得越来越重要了。自适应响应设计更是异常火爆。再加上移动端的崛起,更是如日中天。以前为了适应不同屏幕分布率和浏览器窗口的扩大和缩小,需要设计几套css样式,用js脚本判断窗口大小,选择加载。结构臃肿,加载负担较大。现笔者经过一定时间的学习,有所心得,故分享于此,加强交流,共同进步。同时希望对大家有所
- [sql server] 分组取最大最小常用sql
一炮送你回车库
SQL Server
--分组取最大最小常用sql--测试环境if OBJECT_ID('tb') is not null drop table tb;gocreate table tb( col1 int, col2 int, Fcount int)insert into tbselect 11,20,1 union allselect 11,22,1 union allselect 1
- ImageIO写图片输出到硬盘
3213213333332132
javaimage
package awt;
import java.awt.Color;
import java.awt.Font;
import java.awt.Graphics;
import java.awt.image.BufferedImage;
import java.io.File;
import java.io.IOException;
import javax.imagei
- 自己的String动态数组
宝剑锋梅花香
java动态数组数组
数组还是好说,学过一两门编程语言的就知道,需要注意的是数组声明时需要把大小给它定下来,比如声明一个字符串类型的数组:String str[]=new String[10]; 但是问题就来了,每次都是大小确定的数组,我需要数组大小不固定随时变化怎么办呢? 动态数组就这样应运而生,龙哥给我们讲的是自己用代码写动态数组,并非用的ArrayList 看看字符
- pinyin4j工具类
darkranger
.net
pinyin4j工具类Java工具类 2010-04-24 00:47:00 阅读69 评论0 字号:大中小
引入pinyin4j-2.5.0.jar包:
pinyin4j是一个功能强悍的汉语拼音工具包,主要是从汉语获取各种格式和需求的拼音,功能强悍,下面看看如何使用pinyin4j。
本人以前用AscII编码提取工具,效果不理想,现在用pinyin4j简单实现了一个。功能还不是很完美,
- StarUML学习笔记----基本概念
aijuans
UML建模
介绍StarUML的基本概念,这些都是有效运用StarUML?所需要的。包括对模型、视图、图、项目、单元、方法、框架、模型块及其差异以及UML轮廓。
模型、视与图(Model, View and Diagram)
&
- Activiti最终总结
avords
Activiti id 工作流
1、流程定义ID:ProcessDefinitionId,当定义一个流程就会产生。
2、流程实例ID:ProcessInstanceId,当开始一个具体的流程时就会产生,也就是不同的流程实例ID可能有相同的流程定义ID。
3、TaskId,每一个userTask都会有一个Id这个是存在于流程实例上的。
4、TaskDefinitionKey和(ActivityImpl activityId
- 从省市区多重级联想到的,react和jquery的差别
bee1314
jqueryUIreact
在我们的前端项目里经常会用到级联的select,比如省市区这样。通常这种级联大多是动态的。比如先加载了省,点击省加载市,点击市加载区。然后数据通常ajax返回。如果没有数据则说明到了叶子节点。 针对这种场景,如果我们使用jquery来实现,要考虑很多的问题,数据部分,以及大量的dom操作。比如这个页面上显示了某个区,这时候我切换省,要把市重新初始化数据,然后区域的部分要从页面
- Eclipse快捷键大全
bijian1013
javaeclipse快捷键
Ctrl+1 快速修复(最经典的快捷键,就不用多说了)Ctrl+D: 删除当前行 Ctrl+Alt+↓ 复制当前行到下一行(复制增加)Ctrl+Alt+↑ 复制当前行到上一行(复制增加)Alt+↓ 当前行和下面一行交互位置(特别实用,可以省去先剪切,再粘贴了)Alt+↑ 当前行和上面一行交互位置(同上)Alt+← 前一个编辑的页面Alt+→ 下一个编辑的页面(当然是针对上面那条来说了)Alt+En
- js 笔记 函数
征客丶
JavaScript
一、函数的使用
1.1、定义函数变量
var vName = funcation(params){
}
1.2、函数的调用
函数变量的调用: vName(params);
函数定义时自发调用:(function(params){})(params);
1.3、函数中变量赋值
var a = 'a';
var ff
- 【Scala四】分析Spark源代码总结的Scala语法二
bit1129
scala
1. Some操作
在下面的代码中,使用了Some操作:if (self.partitioner == Some(partitioner)),那么Some(partitioner)表示什么含义?首先partitioner是方法combineByKey传入的变量,
Some的文档说明:
/** Class `Some[A]` represents existin
- java 匿名内部类
BlueSkator
java匿名内部类
组合优先于继承
Java的匿名类,就是提供了一个快捷方便的手段,令继承关系可以方便地变成组合关系
继承只有一个时候才能用,当你要求子类的实例可以替代父类实例的位置时才可以用继承。
在Java中内部类主要分为成员内部类、局部内部类、匿名内部类、静态内部类。
内部类不是很好理解,但说白了其实也就是一个类中还包含着另外一个类如同一个人是由大脑、肢体、器官等身体结果组成,而内部类相
- 盗版win装在MAC有害发热,苹果的东西不值得买,win应该不用
ljy325
游戏applewindowsXPOS
Mac mini 型号: MC270CH-A RMB:5,688
Apple 对windows的产品支持不好,有以下问题:
1.装完了xp,发现机身很热虽然没有运行任何程序!貌似显卡跑游戏发热一样,按照那样的发热量,那部机子损耗很大,使用寿命受到严重的影响!
2.反观安装了Mac os的展示机,发热量很小,运行了1天温度也没有那么高
&nbs
- 读《研磨设计模式》-代码笔记-生成器模式-Builder
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
/**
* 生成器模式的意图在于将一个复杂的构建与其表示相分离,使得同样的构建过程可以创建不同的表示(GoF)
* 个人理解:
* 构建一个复杂的对象,对于创建者(Builder)来说,一是要有数据来源(rawData),二是要返回构
- JIRA与SVN插件安装
chenyu19891124
SVNjira
JIRA安装好后提交代码并要显示在JIRA上,这得需要用SVN的插件才能看见开发人员提交的代码。
1.下载svn与jira插件安装包,解压后在安装包(atlassian-jira-subversion-plugin-0.10.1)
2.解压出来的包里下的lib文件夹下的jar拷贝到(C:\Program Files\Atlassian\JIRA 4.3.4\atlassian-jira\WEB
- 常用数学思想方法
comsci
工作
对于搞工程和技术的朋友来讲,在工作中常常遇到一些实际问题,而采用常规的思维方式无法很好的解决这些问题,那么这个时候我们就需要用数学语言和数学工具,而使用数学工具的前提却是用数学思想的方法来描述问题。。下面转帖几种常用的数学思想方法,仅供学习和参考
函数思想
把某一数学问题用函数表示出来,并且利用函数探究这个问题的一般规律。这是最基本、最常用的数学方法
- pl/sql集合类型
daizj
oracle集合typepl/sql
--集合类型
/*
单行单列的数据,使用标量变量
单行多列数据,使用记录
单列多行数据,使用集合(。。。)
*集合:类似于数组也就是。pl/sql集合类型包括索引表(pl/sql table)、嵌套表(Nested Table)、变长数组(VARRAY)等
*/
/*
--集合方法
&n
- [Ofbiz]ofbiz初用
dinguangx
电商ofbiz
从github下载最新的ofbiz(截止2015-7-13),从源码进行ofbiz的试用
1. 加载测试库
ofbiz内置derby,通过下面的命令初始化测试库
./ant load-demo (与load-seed有一些区别)
2. 启动内置tomcat
./ant start
或
./startofbiz.sh
或
java -jar ofbiz.jar
&
- 结构体中最后一个元素是长度为0的数组
dcj3sjt126com
cgcc
在Linux源代码中,有很多的结构体最后都定义了一个元素个数为0个的数组,如/usr/include/linux/if_pppox.h中有这样一个结构体: struct pppoe_tag { __u16 tag_type; __u16 tag_len; &n
- Linux cp 实现强行覆盖
dcj3sjt126com
linux
发现在Fedora 10 /ubutun 里面用cp -fr src dest,即使加了-f也是不能强行覆盖的,这时怎么回事的呢?一两个文件还好说,就输几个yes吧,但是要是n多文件怎么办,那还不输死人呢?下面提供三种解决办法。 方法一
我们输入alias命令,看看系统给cp起了一个什么别名。
[root@localhost ~]# aliasalias cp=’cp -i’a
- Memcached(一)、HelloWorld
frank1234
memcached
一、简介
高性能的架构离不开缓存,分布式缓存中的佼佼者当属memcached,它通过客户端将不同的key hash到不同的memcached服务器中,而获取的时候也到相同的服务器中获取,由于不需要做集群同步,也就省去了集群间同步的开销和延迟,所以它相对于ehcache等缓存来说能更好的支持分布式应用,具有更强的横向伸缩能力。
二、客户端
选择一个memcached客户端,我这里用的是memc
- Search in Rotated Sorted Array II
hcx2013
search
Follow up for "Search in Rotated Sorted Array":What if duplicates are allowed?
Would this affect the run-time complexity? How and why?
Write a function to determine if a given ta
- Spring4新特性——更好的Java泛型操作API
jinnianshilongnian
spring4generic type
Spring4新特性——泛型限定式依赖注入
Spring4新特性——核心容器的其他改进
Spring4新特性——Web开发的增强
Spring4新特性——集成Bean Validation 1.1(JSR-349)到SpringMVC
Spring4新特性——Groovy Bean定义DSL
Spring4新特性——更好的Java泛型操作API
Spring4新
- CentOS安装JDK
liuxingguome
centos
1、行卸载原来的:
[root@localhost opt]# rpm -qa | grep java
tzdata-java-2014g-1.el6.noarch
java-1.7.0-openjdk-1.7.0.65-2.5.1.2.el6_5.x86_64
java-1.6.0-openjdk-1.6.0.0-11.1.13.4.el6.x86_64
[root@localhost
- 二分搜索专题2-在有序二维数组中搜索一个元素
OpenMind
二维数组算法二分搜索
1,设二维数组p的每行每列都按照下标递增的顺序递增。
用数学语言描述如下:p满足
(1),对任意的x1,x2,y,如果x1<x2,则p(x1,y)<p(x2,y);
(2),对任意的x,y1,y2, 如果y1<y2,则p(x,y1)<p(x,y2);
2,问题:
给定满足1的数组p和一个整数k,求是否存在x0,y0使得p(x0,y0)=k?
3,算法分析:
(
- java 随机数 Math与Random
SaraWon
javaMathRandom
今天需要在程序中产生随机数,知道有两种方法可以使用,但是使用Math和Random的区别还不是特别清楚,看到一篇文章是关于的,觉得写的还挺不错的,原文地址是
http://www.oschina.net/question/157182_45274?sort=default&p=1#answers
产生1到10之间的随机数的两种实现方式:
//Math
Math.roun
- oracle创建表空间
tugn
oracle
create temporary tablespace TXSJ_TEMP
tempfile 'E:\Oracle\oradata\TXSJ_TEMP.dbf'
size 32m
autoextend on
next 32m maxsize 2048m
extent m
- 使用Java8实现自己的个性化搜索引擎
yangshangchuan
javasuperword搜索引擎java8全文检索
需要对249本软件著作实现句子级别全文检索,这些著作均为PDF文件,不使用现有的框架如lucene,自己实现的方法如下:
1、从PDF文件中提取文本,这里的重点是如何最大可能地还原文本。提取之后的文本,一个句子一行保存为文本文件。
2、将所有文本文件合并为一个单一的文本文件,这样,每一个句子就有一个唯一行号。
3、对每一行文本进行分词,建立倒排表,倒排表的格式为:词=包含该词的总行数N=行号