1.基于PyTorch实现的UNet模型代码进行数据集测试2.Transformer和CNN混合模型,用于图像分割任务3.基于Swin Transformer图像分割模型架构
经典的UNet架构,它是一种用于图像分割的卷积神经网络。UNet由编码器和解码器两部分组成,通过跳跃连接(skip connections)来融合不同层次的信息。基于PyTorch实现的UNet模型代码示例,如何使用该模型进行数据集测试的流程。
import torch
import torch.nn as nn
import torch.nn.functional as F
class DoubleConv(nn.Module):
"""(convolution => [BN] => ReLU) * 2"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.double_conv = nn.Sequential(
nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True),
nn.Conv2d(out_channels, out_channels, kernel_size=3, padding=1),
nn.BatchNorm2d(out_channels),
nn.ReLU(inplace=True)
)
def forward(self, x):
return self.double_conv(x)
class Down(nn.Module):
"""Downscaling with maxpool then double conv"""
def __init__(self, in_channels, out_channels):
super().__init__()
self.maxpool_conv = nn.Sequential(
nn.MaxPool2d(2),
DoubleConv(in_channels, out_channels)
)
def forward(self, x):
return self.maxpool_conv(x)
class Up(nn.Module):
"""Upscaling then double conv"""
def __init__(self, in_channels, out_channels, bilinear=True):
super().__init__()
# if bilinear, use the normal convolutions to reduce the number of channels
if bilinear:
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = DoubleConv(in_channels, out_channels // 2)
else:
self.up = nn.ConvTranspose2d(in_channels, in_channels // 2, kernel_size=2, stride=2)
self.conv = DoubleConv(in_channels, out_channels)
def forward(self, x1, x2):
x1 = self.up(x1)
# input is CHW
diffY = x2.size()[2] - x1.size()[2]
diffX = x2.size()[3] - x1.size()[3]
x1 = F.pad(x1, [diffX // 2, diffX - diffX // 2,
diffY // 2, diffY - diffY // 2])
# if you have padding issues, see
# https://github.com/HaiyongJiang/U-Net-Pytorch-Unstructured-Buggy/commit/0e854509c2cea854e247a9c615f175f76fbb2e3a
# https://github.com/xiaopeng-liao/Pytorch-UNet/commit/8ebac70e633bac59fc22bb5195e513d5832fb3bd
x = torch.cat([x2, x1], dim=1)
return self.conv(x)
class OutConv(nn.Module):
def __init__(self, in_channels, out_channels):
super(OutConv, self).__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class UNet(nn.Module):
def __init__(self, n_channels, n_classes, bilinear=True):
super(UNet, self).__init__()
self.n_channels = n_channels
self.n_classes = n_classes
self.bilinear = bilinear
self.inc = DoubleConv(n_channels, 64)
self.down1 = Down(64, 128)
self.down2 = Down(128, 256)
self.down3 = Down(256, 512)
factor = 2 if bilinear else 1
self.down4 = Down(512, 1024 // factor)
self.up1 = Up(1024, 512 // factor, bilinear)
self.up2 = Up(512, 256 // factor, bilinear)
self.up3 = Up(256, 128 // factor, bilinear)
self.up4 = Up(128, 64, bilinear)
self.outc = OutConv(64, n_classes)
def forward(self, x):
x1 = self.inc(x)
x2 = self.down1(x1)
x3 = self.down2(x2)
x4 = self.down3(x3)
x5 = self.down4(x4)
x = self.up1(x5, x4)
x = self.up2(x, x3)
x = self.up3(x, x2)
x = self.up4(x, x1)
logits = self.outc(x)
return logits
# 初始化模型
n_channels = 3
n_classes = 1
model = UNet(n_channels, n_classes).cuda()
假设你已经有了一个包含图像和对应标签的数据集,可以按照以下步骤准备数据集:
from torch.utils.data import Dataset, DataLoader
from torchvision import transforms
from PIL import Image
import os
class CustomDataset(Dataset):
def __init__(self, img_dir, mask_dir, transform=None):
self.img_dir = img_dir
self.mask_dir = mask_dir
self.transform = transform
self.images = sorted(os.listdir(img_dir))
self.masks = sorted(os.listdir(mask_dir))
def __len__(self):
return len(self.images)
def __getitem__(self, idx):
img_path = os.path.join(self.img_dir, self.images[idx])
mask_path = os.path.join(self.mask_dir, self.masks[idx])
image = Image.open(img_path).convert("RGB")
mask = Image.open(mask_path).convert("L")
if self.transform:
image = self.transform(image)
mask = self.transform(mask)
return image, mask
# 数据增强
transform = transforms.Compose([
transforms.ToTensor(),
])
dataset = CustomDataset(
img_dir="path/to/your/images",
mask_dir="path/to/your/masks",
transform=transform
)
data_loader = DataLoader(dataset, batch_size=4, shuffle=False)
以下是测试代码,用于加载模型并进行预测:
def test_model(model, data_loader, device):
model.eval()
with torch.no_grad():
for images, masks in data_loader:
images = images.to(device)
masks = masks.to(device)
outputs = model(images)
preds = torch.argmax(outputs, dim=1).cpu().numpy()
# 可视化结果
visualize_results(images.cpu(), masks.cpu().numpy(), preds)
def visualize_results(images, masks, preds, num_samples=3):
import matplotlib.pyplot as plt
fig, axes = plt.subplots(num_samples, 3, figsize=(15, 5*num_samples))
for i in range(num_samples):
ax = axes[i]
ax[0].imshow(images[i].permute(1, 2, 0))
ax[0].set_title('Image')
ax[1].imshow(masks[i], cmap='gray')
ax[1].set_title('Ground Truth')
ax[2].imshow(preds[i], cmap='gray')
ax[2].set_title('Prediction')
plt.show()
device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
# 加载你的模型并移动到设备上
model_unet = UNet(n_channels=3, n_classes=1).to(device)
# 假设模型已经训练好,加载权重
model_unet.load_state_dict(torch.load('path/to/unet_weights.pth'))
test_model(model_unet, data_loader, device)
这段代码实现了一个结合了Transformer和CNN的混合模型,专门用于图像分割任务。以下是该模型的中文解释及其在PyTorch中的实现。
输入层:输入是一个嵌入序列 ( x_p^1, x_p^2, \ldots, x_p^N ),这些是从原图中提取出的补丁(patches)。
Transformer 层:
CNN 块:
分割头(Segmentation Head):生成最终的分割掩码。
import torch
import torch.nn as nn
import torch.nn.functional as F
class TransformerBlock(nn.Module):
def __init__(self, dim, heads=8, mlp_dim=2048):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(dim, heads)
self.norm2 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, mlp_dim),
nn.GELU(),
nn.Linear(mlp_dim, dim)
)
def forward(self, x):
x = x + self.attn(self.norm1(x), self.norm1(x), self.norm1(x))[0]
x = x + self.mlp(self.norm2(x))
return x
class CNNBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU()
self.pool = nn.MaxPool2d(kernel_size=2, stride=2)
def forward(self, x):
x = self.conv(x)
x = self.relu(x)
x = self.pool(x)
return x
class UpsampleBlock(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.up = nn.Upsample(scale_factor=2, mode='bilinear', align_corners=True)
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=3, padding=1)
self.relu = nn.ReLU()
def forward(self, x, skip=None):
x = self.up(x)
if skip is not None:
x = torch.cat([x, skip], dim=1)
x = self.conv(x)
x = self.relu(x)
return x
class SegmentationHead(nn.Module):
def __init__(self, in_channels, out_channels):
super().__init__()
self.conv = nn.Conv2d(in_channels, out_channels, kernel_size=1)
def forward(self, x):
return self.conv(x)
class HybridModel(nn.Module):
def __init__(self, img_size=352, patch_size=16, in_channels=3, num_classes=1, transformer_layers=12):
super().__init__()
self.patch_size = patch_size
self.num_patches = (img_size // patch_size) ** 2
self.embed_dim = 768 # 示例嵌入维度
self.transformer = nn.Sequential(*[TransformerBlock(self.embed_dim) for _ in range(transformer_layers)])
self.cnn_blocks = nn.ModuleList([
CNNBlock(3, 64),
CNNBlock(64, 128),
CNNBlock(128, 256),
CNNBlock(256, 512)
])
self.upsample_blocks = nn.ModuleList([
UpsampleBlock(512, 256),
UpsampleBlock(256, 128),
UpsampleBlock(128, 64),
UpsampleBlock(64, 32)
])
self.segmentation_head = SegmentationHead(32, num_classes)
def forward(self, x):
# 补丁嵌入
patches = x.unfold(2, self.patch_size, self.patch_size).unfold(3, self.patch_size, self.patch_size)
patches = patches.reshape(x.shape[0], self.num_patches, -1)
z = self.transformer(patches)
# 重新整形回图像
z = z.reshape(x.shape[0], self.embed_dim, *((x.shape[2] // self.patch_size), (x.shape[3] // self.patch_size)))
# CNN 块
skips = []
for cnn_block in self.cnn_blocks:
z = cnn_block(z)
skips.append(z)
# 上采样和连接
for i, upsample_block in enumerate(self.upsample_blocks):
z = upsample_block(z, skips.pop())
# 分割头
z = self.segmentation_head(z)
return z
# 使用示例
model = HybridModel()
input_image = torch.randn(1, 3, 352, 352)
output = model(input_image)
print(output.shape)
Transformer块与CNN块集成在一起用于图像分割。HybridModel
类封装了整个架构,包括Transformer层、CNN块、上采样块和分割头。如何创建模型实例,并将输入图像传递给模型。
这张图展示了一个基于Swin Transformer的图像分割模型架构,包括编码器(Encoder)、瓶颈层(Bottleneck)和解码器(Decoder)。以下是该架构的详细解析及Python实现。
import torch
import torch.nn as nn
import torch.nn.functional as F
class SwinTransformerBlock(nn.Module):
def __init__(self, dim, num_heads, mlp_ratio=4., qkv_bias=False, drop=0., attn_drop=0., drop_path=0.):
super().__init__()
self.norm1 = nn.LayerNorm(dim)
self.attn = nn.MultiheadAttention(dim, num_heads, dropout=attn_drop, bias=qkv_bias)
self.drop_path = nn.Dropout(drop_path)
self.norm2 = nn.LayerNorm(dim)
self.mlp = nn.Sequential(
nn.Linear(dim, int(dim * mlp_ratio)),
nn.GELU(),
nn.Linear(int(dim * mlp_ratio), dim),
nn.Dropout(drop)
)
def forward(self, x):
x = x + self.drop_path(self.attn(self.norm1(x))[0])
x = x + self.drop_path(self.mlp(self.norm2(x)))
return x
class PatchMerging(nn.Module):
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.reduction = nn.Linear(4 * dim, 2 * dim, bias=False)
self.norm = norm_layer(4 * dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
assert H % 2 == 0 and W % 2 == 0, f"x size ({H}*{W}) are not even."
x = x.view(B, H, W, C)
x0 = x[:, 0::2, 0::2, :] # B H/2 W/2 C
x1 = x[:, 1::2, 0::2, :] # B H/2 W/2 C
x2 = x[:, 0::2, 1::2, :] # B H/2 W/2 C
x3 = x[:, 1::2, 1::2, :] # B H/2 W/2 C
x = torch.cat([x0, x1, x2, x3], -1) # B H/2 W/2 4*C
x = x.view(B, -1, 4 * C) # B H/2*W/2 4*C
x = self.norm(x)
x = self.reduction(x)
return x
class PatchExpanding(nn.Module):
def __init__(self, input_resolution, dim, norm_layer=nn.LayerNorm):
super().__init__()
self.input_resolution = input_resolution
self.dim = dim
self.expand = nn.Linear(dim, 4 * dim, bias=False)
self.norm = norm_layer(dim)
def forward(self, x):
"""
x: B, H*W, C
"""
H, W = self.input_resolution
B, L, C = x.shape
assert L == H * W, "input feature has wrong size"
x = self.norm(x)
x = self.expand(x)
x = x.view(B, H, W, 4 * C)
x0 = x[:, :, :, :C] # B H W C
x1 = x[:, :, :, C:2*C] # B H W C
x2 = x[:, :, :, 2*C:3*C] # B H W C
x3 = x[:, :, :, 3*C:] # B H W C
x = torch.cat([x0, x1, x2, x3], 1) # B 4*H W C
return x.view(B, -1, C)
class SwinUNet(nn.Module):
def __init__(self, img_size=224, patch_size=4, in_chans=3, num_classes=1, embed_dim=96, depths=[2, 2, 6, 2], num_heads=[3, 6, 12, 24]):
super().__init__()
self.img_size = img_size
self.patch_size = patch_size
self.in_chans = in_chans
self.num_classes = num_classes
self.embed_dim = embed_dim
self.depths = depths
self.num_heads = num_heads
self.patch_partition = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_size, stride=patch_size)
self.linear_embedding = nn.Linear(embed_dim, embed_dim)
# Encoder
self.encoder = nn.ModuleList()
for i in range(len(depths)):
self.encoder.append(SwinTransformerBlock(embed_dim * (2 ** i), num_heads[i]))
if i < len(depths) - 1:
self.encoder.append(PatchMerging((img_size // (patch_size * (2 ** i)), img_size // (patch_size * (2 ** i))), embed_dim * (2 ** i)))
# Bottleneck
self.bottleneck = nn.Sequential(
SwinTransformerBlock(embed_dim * (2 ** len(depths)), num_heads[-1]),
SwinTransformerBlock(embed_dim * (2 ** len(depths)), num_heads[-1])
)
# Decoder
self.decoder = nn.ModuleList()
for i in reversed(range(len(depths))):
self.decoder.append(PatchExpanding((img_size // (patch_size * (2 ** i)), img_size // (patch_size * (2 ** i))), embed_dim * (2 ** i)))
self.decoder.append(SwinTransformerBlock(embed_dim * (2 ** i), num_heads[i]))
self.segmentation_head = nn.Conv2d(embed_dim, num_classes, kernel_size=1)
def forward(self, x):
# Patch Partition
x = self.patch_partition(x)
x = x.flatten(2).transpose(1, 2)
x = self.linear_embedding(x)
# Encoder
skips = []
for layer in self.encoder:
x = layer(x)
if isinstance(layer, PatchMerging):
skips.append(x)
# Bottleneck
x = self.bottleneck(x)
# Decoder
for i, layer in enumerate(self.decoder):
if i % 2 == 0:
x = layer(x)
else:
skip = skips.pop()
x = torch.cat([x, skip], dim=1)
x = layer(x)
# Segmentation Head
x = x.transpose(1, 2).reshape(x.size(0), x.size(1), self.img_size // self.patch_size, self.img_size // self.patch_size)
x = self.segmentation_head(x)
return x
# 使用示例
model = SwinUNet()
input_image = torch.randn(1, 3, 224, 224)
output = model(input_image)
print(output.shape)
基于Swin Transformer的混合模型,用于图像分割任务。SwinUNet
类封装了整个架构,包括编码器、瓶颈层和解码器。如何创建模型实例,并将输入图像传递给模型。