- 实时数据流计算引擎Flink和Spark剖析
程小舰
flinkspark数据库kafkahadoop
在过去几年,业界的主流流计算引擎大多采用SparkStreaming,随着近两年Flink的快速发展,Flink的使用也越来越广泛。与此同时,Spark针对SparkStreaming的不足,也继而推出了新的流计算组件。本文旨在深入分析不同的流计算引擎的内在机制和功能特点,为流处理场景的选型提供参考。(DLab数据实验室w.x.公众号出品)一.SparkStreamingSparkStreamin
- 第84课:StreamingContext、DStream、Receiver深度剖析
chengnidi5193
StreamingContext、DStream、Receiver深度剖析编写人:姜伟、唐陈昊、龚湄燕本课分成四部分讲解,第一部分对StreamingContext功能及源码剖析;第二部分对DStream功能及源码剖析;第三部分对Receiver功能及源码剖析;最后一部分将StreamingContext、DStream、Receiver结合起来分析其流程。1、通过SparkStreaming对象
- 大数据技术之Flink
第1章Flink概述1.1Flink是什么1.2Flink特点1.3FlinkvsSparkStreaming表Flink和Streaming对比FlinkStreaming计算模型流计算微批处理时间语义事件时间、处理时间处理时间窗口多、灵活少、不灵活(窗口必须是批次的整数倍)状态有没有流式SQL有没有1.4Flink的应用场景1.5Flink分层API第2章Flink快速上手2.1创建项目在准备
- Spark Streaming 与 Flink 实时数据处理方案对比与选型指南
浅沫云归
后端技术栈小结spark-streamingflinkreal-time
SparkStreaming与Flink实时数据处理方案对比与选型指南实时数据处理在互联网、电商、物流、金融等领域均有大量应用,面对海量流式数据,SparkStreaming和Flink成为两大主流开源引擎。本文基于生产环境需求,从整体架构、编程模型、容错机制、性能表现、实践案例等维度进行深入对比,并给出选型建议。一、问题背景介绍业务场景日志实时统计与告警用户行为实时画像实时订单或交易监控流式ET
- Spark Streaming 原理与代码实例讲解
AI智能应用
AI大模型应用入门实战与进阶Python入门实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
SparkStreaming原理与代码实例讲解1.背景介绍1.1实时流数据处理的重要性在当今大数据时代,海量的数据正以前所未有的速度不断产生。传统的批处理模式已经无法满足实时性要求较高的应用场景,如实时推荐、实时欺诈检测等。因此,实时流数据处理技术应运而生,成为大数据领域的研究热点。1.2SparkStreaming的优势SparkStreaming是ApacheSpark生态系统中的一个重要组件
- HoRain云--SparkStreaming实时分析的7大优势解析
HoRain 云小助手
spark前端服务器
HoRain云小助手:个人主页⛺️生活的理想,就是为了理想的生活!⛳️推荐前些天发现了一个超棒的服务器购买网站,性价比超高,大内存超划算!忍不住分享一下给大家。点击跳转到网站。目录⛳️推荐1.与Spark生态的深度集成2.高吞吐量与水平扩展能力3.强大的容错机制4.灵活的状态管理与窗口操作5.丰富的输入/输出连接器6.开发与调试便捷性7.成本效益适用场景总结与其他流处理框架的对比总结SparkSt
- Spark快速入门与实战案例解析
喵手
数据库spark大数据分布式
全文目录:开篇语前言️目录什么是ApacheSpark?为什么选择Spark?⚙️Spark核心组件及架构解析Spark的架构设计Spark环境配置与启动1.安装Java2.下载并配置Spark3.启动SparkShell实战案例:使用Spark进行数据分析1.准备数据2.编写Spark程序3.执行结果Spark扩展与高级应用1.数据流处理(SparkStreaming)2.机器学习(MLlib
- 数据分析学习 Day_01
Detachym
sqlhadoopmysqlspark大数据
一、大数据核心概念与典型业务需求实时分析特点:处理短时间内产生的数据流(如日志、交易、传感器数据)。目标:对正在发生的事件进行即时洞察、监控和响应。技术侧重:流式计算框架(如Flink,SparkStreaming,Storm)。批处理/离线分析特点:处理较长时间跨度内积累的海量历史数据(如日/周/月数据)。目标:面向过去,进行周期性(如每日/每周)的统计、汇总、报表生成和深度挖掘。技术侧重:批处
- 征服Spark as a Service
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- 一天征服Spark!
wangruoze
SparkSpark课程Spark培训Spark企业内训Spark讲师
Spark是当今大数据领域最活跃最热门的高效的大数据通用计算平台,基于RDD,Spark成功的构建起了一体化、多元化的大数据处理体系,在“OneStacktorulethemall”思想的引领下,Spark成功的使用SparkSQL、SparkStreaming、MLLib、GraphX近乎完美的解决了大数据中BatchProcessing、StreamingProcessing、Ad-hocQu
- 使用 PySpark 从 Kafka 读取数据流并处理为表
Bug Spray
kafkalinq分布式
使用PySpark从Kafka读取数据流并处理为表下面是一个完整的指南,展示如何通过PySpark从Kafka消费数据流,并将其处理为可以执行SQL查询的表。1.环境准备确保已安装:ApacheSpark(包含SparkSQL和SparkStreaming)KafkaPySpark对应的Kafka连接器(通常已包含在Spark发行版中)2.完整代码示例frompyspark.sqlimportSp
- Spark实时流数据处理实例(SparkStreaming通话记录消息处理)
qrh_yogurt
sparkpythonpycharm
所用资源:通过网盘分享的文件:spark-streaming-kafka-0-8-assembly_2.11-2.4.8.jar等4个文件链接:https://pan.baidu.com/s/1zYHu29tLgDvS_L2Ud-22ZA?pwd=hnpg提取码:hnpg1.需求分析:假定有一个手机通信计费系统,用户通话时在基站交换机上临时保存了相关记录,由于交换机的容量有限且分散在各地,因此需要
- 【SparkStreaming】面试题
言之。
大数据
SparkStreaming是ApacheSpark提供的一个扩展模块,用于处理实时数据流。它使得可以使用Spark强大的批处理能力来处理连续的实时数据流。SparkStreaming提供了高级别的抽象,如DStream(DiscretizedStream),它代表了连续的数据流,并且可以通过应用在其上的高阶操作来进行处理,类似于对静态数据集的操作(如map、reduce、join等)。Spark
- Spark入门秘籍
£菜鸟也有梦
大数据基础spark大数据分布式
目录一、Spark是什么?1.1内存计算:速度的飞跃1.2多语言支持:开发者的福音1.3丰富组件:一站式大数据处理平台二、Spark能做什么?2.1电商行业:洞察用户,精准营销2.2金融行业:防范风险,智慧决策2.3科研领域:加速研究,探索未知三、Spark核心组件揭秘3.1SparkCore3.2SparkSQL3.3SparkStreaming3.4SparkMLlib3.5SparkGrap
- TasksetManager冲突导致SparkContext异常关闭
liujianhuiouc
spark
背景介绍当正在悠闲敲着代码的时候,业务方兄弟反馈接收到大量线上运行的sparkstreaming任务的告警短信,查看应用的web页面信息,发现spark应用已经退出了,第一时间拉起线上的应用,再慢慢的定位故障原因。本文代码基于spark1.6.1。问题定位登陆到线上机器,查看错误日志,发现系统一直报CannotcallmethodsonastoppedSparkContext.,全部日志如下[ER
- Flink和Spark的选型
静听山水
大数据flinkspark大数据
在Flink和Spark的选型中,需要综合考虑多个技术维度和业务需求,以下是在项目中会重点评估的因素及实际案例说明:一、核心选型因素处理模式与延迟要求Flink:基于事件驱动的流处理优先架构,支持毫秒级低延迟、高吞吐的实时处理,适合严格的无界数据流场景(如实时风控、监控告警)。Spark:基于微批处理(SparkStreaming)或连续处理(StructuredStreaming),延迟通常在秒
- spark运行架构及核心组件介绍
大数据知识搬运工
spark学习spark架构大数据
目录1.Spark的运行架构1.1Driver1.2Executor1.3ClusterManager1.4工作流程2.Spark的核心组件2.1SparkCore2.2SparkSQL2.3SparkStreaming2.4MLlib2.5GraphX3.Spark架构图4.Spark的优势4.1高性能4.2易用性4.3扩展性4.4容错性5.总结1.Spark的运行架构Spark的运行架构采用M
- 大数据Flink相关面试题(一)
从头再来的码农
Flink面试题大数据flink
文章目录一、基础概念1.Flink的核心设计目标是什么?与SparkStreaming的架构差异?2.解释Flink的“有状态流处理”概念。3.Flink的流处理(DataStreamAPI)与批处理(DataSetAPI)底层执行模型有何不同?4.Flink的时间语义(EventTime、ProcessingTime、IngestionTime)区别与应用场景。5.如何配置Flink使用Eve
- SparkStreaming之persist缓存
稳哥的哥
SparkStreaming
SparkStreaming之缓存与RDD的缓存类似,DStream也允许用户将数据持久化到内存中,只需要使用DStream.persist()方法,就会自动将DSstream中的数据缓存在内存中,这对需要多次计算的DStream数据是一个很好的优化,对于window操作「比如reduceByWindow,reduceByKeyAndWindow」和state操作算子如「updateStateBy
- Kafka使用教程
大三小小小白
kafka分布式
1.Kafka简介与应用场景ApacheKafka是一种高性能的分布式消息队列系统,广泛应用于以下场景:日志聚合:收集和汇总系统日志,便于集中管理和分析。事件源:实时处理用户行为事件,如点击流、购买行为等。流处理:与流处理框架(如ApacheFlink、ApacheSparkStreaming)结合,进行实时数据分析。微服务通信:作为微服务架构中的消息中间件,实现服务间异步通信。物联网(IoT):
- Kafka+sparkStreaming+Hbase(一)
郝少
Spark技术经验大数据spark
一、说明1、需求分析实时定位系统:实时定位某个用户的具体位置,将最新数据进行存储;2、具体操作sparkStreaming从kafka消费到原始用户定位信息,进行分析。然后将分析之后且满足需求的数据按rowkey=用户名进行Hbase存储;这里为了简化,kafka消费出的原始数据即是分析好之后的数据,故消费出可以直接进行存储;3、组件版本组件版本kafkakafka_2.10-0.10.2.1sp
- 实时步数统计系统 kafka + spark +redis
ShAn DiAn
rediskafkasparkredis分布式大数据
基于微服务架构设计并实现了一个实时步数统计系统,采用生产者-消费者模式,利用Kafka实现消息队列,SparkStreaming处理实时数据流,Redis提供高性能数据存储,实现了一个高并发、低延迟的数据处理系统,支持多用户运动数据的实时采集、传输、处理和统计分析。1.介绍1.数据采集与生产者(StepDataProducer)作用:负责生成用户步数数据并发送到Kafka主题。原理:生产者会随机生
- Flume+kafka+SparkStreaming整合
逆水行舟如何
大数据架构kafka常用命令flume进行数据收集的编写实时架构
一、需求模拟一个流式处理场景:我再说话,我编写好的一个sparkstreaming做词频统计1.模拟说话:nc-lk3399flumesource:avro(qyl01:3399)channel:memorysink:kafkasink模拟实时的日志生成:echoaabbcc>>/home/qyl/logs/flume.logflumesource:exec(tail-f)channel:memo
- Spark SQL核心解析:大数据时代的结构化处理利器
北屿升:
微信新浪微博百度
在大数据处理领域,Spark以其强大的分布式计算能力脱颖而出,而SparkSQL作为Spark生态系统的重要组成部分,为结构化和半结构化数据处理提供了高效便捷的解决方案。它不仅整合了传统SQL的强大查询功能,还深度集成到Spark的计算框架中,实现了与其他组件(如SparkStreaming、SparkML等)的无缝协作。下面我们将深入探讨SparkSQL的核心概念与技术要点。一、SparkSQL
- SparkStreaming概述
淋一遍下雨天
spark大数据学习
SparkStreaming主要用于流式计算,处理实时数据。DStream是SparkStreaming中的数据抽象模型,表示随着时间推移收到的数据序列。SparkStreaming支持多种数据输入源(如Kafka、Flume、Twitter、TCP套接字等)和数据输出位置(如HDFS、数据库等)。SparkStreaming特点易用性:支持Java、Python、Scala等编程语言,编写实时计
- spark与kafka
zqk-Sun
bigdatasparkkafka
sparkspark基础知识spark的任务提交流程shuffle过程分析rdd的特点与五大属性spark整合kafka1、SparkStreaming+Kafka----Receiver用的是Kafka高层次的消费者api,不能自己维护offsetobjectSparkkafka08ReceiverDStream{defmain(args:Array[String]):Unit={valspar
- kafka spark java_Kafka与Spark整合
weixin_39630247
kafkasparkjava
本篇文章帮大家学习Kafka与Spark整合,包含了Kafka与Spark整合使用方法、操作技巧、实例演示和注意事项,有一定的学习价值,大家可以用来参考。在本章中,将讨论如何将apacheKafka与SparkStreamingAPI集成。Spark是什么?SparkStreamingAPI支持实时数据流的可扩展,高吞吐量,容错流处理。数据可以从Kafka,Flume,Twitter等许多来源获取
- KafkaSpark Streaming整合原理与代码实例讲解
AI天才研究院
计算AI大模型企业级应用开发实战DeepSeekR1&大数据AI人工智能大模型计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Kafka-SparkStreaming整合原理与代码实例讲解作者:禅与计算机程序设计艺术/ZenandtheArtofComputerProgramming关键词:Kafka,SparkStreaming,大数据处理,实时流处理,分布式系统1.背景介绍1.1问题的由来随着大数据时代的发展,实时数据处理成为了许多业务的关键需求。在这样的背景下,如何有效地从海量数据中提取有价值的信息,成为了一个亟待
- Spark-Streaming核心编程
[太阳]88
spark
以下是今天所学的知识点与代码测试:Spark-StreamingDStream实操案例一:WordCount案例需求:使用netcat工具向9999端口不断的发送数据,通过SparkStreaming读取端口数据并统计不同单词出现的次数实验步骤:添加依赖org.apache.sparkspark-streaming_2.123.0.0编写代码valsparkConf=newSparkConf().
- KafkaSpark Streaming整合原理与代码实例讲解
AGI大模型与大数据研究院
DeepSeekR1&大数据AI人工智能计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
Kafka-SparkStreaming整合原理与代码实例讲解1.背景介绍1.1实时数据处理的重要性在当今大数据时代,海量数据以前所未有的速度持续产生。企业需要实时处理和分析这些数据,以便及时洞察业务状况,快速响应市场变化。传统的批处理方式已无法满足实时性要求,因此实时数据处理技术应运而生。1.2Kafka与SparkStreaming在实时处理中的地位Kafka作为高吞吐量的分布式消息队列,能够
- Js函数返回值
_wy_
jsreturn
一、返回控制与函数结果,语法为:return 表达式;作用: 结束函数执行,返回调用函数,而且把表达式的值作为函数的结果 二、返回控制语法为:return;作用: 结束函数执行,返回调用函数,而且把undefined作为函数的结果 在大多数情况下,为事件处理函数返回false,可以防止默认的事件行为.例如,默认情况下点击一个<a>元素,页面会跳转到该元素href属性
- MySQL 的 char 与 varchar
bylijinnan
mysql
今天发现,create table 时,MySQL 4.1有时会把 char 自动转换成 varchar
测试举例:
CREATE TABLE `varcharLessThan4` (
`lastName` varchar(3)
) ;
mysql> desc varcharLessThan4;
+----------+---------+------+-
- Quartz——TriggerListener和JobListener
eksliang
TriggerListenerJobListenerquartz
转载请出自出处:http://eksliang.iteye.com/blog/2208624 一.概述
listener是一个监听器对象,用于监听scheduler中发生的事件,然后执行相应的操作;你可能已经猜到了,TriggerListeners接受与trigger相关的事件,JobListeners接受与jobs相关的事件。
二.JobListener监听器
j
- oracle层次查询
18289753290
oracle;层次查询;树查询
.oracle层次查询(connect by)
oracle的emp表中包含了一列mgr指出谁是雇员的经理,由于经理也是雇员,所以经理的信息也存储在emp表中。这样emp表就是一个自引用表,表中的mgr列是一个自引用列,它指向emp表中的empno列,mgr表示一个员工的管理者,
select empno,mgr,ename,sal from e
- 通过反射把map中的属性赋值到实体类bean对象中
酷的飞上天空
javaee泛型类型转换
使用过struts2后感觉最方便的就是这个框架能自动把表单的参数赋值到action里面的对象中
但现在主要使用Spring框架的MVC,虽然也有@ModelAttribute可以使用但是明显感觉不方便。
好吧,那就自己再造一个轮子吧。
原理都知道,就是利用反射进行字段的赋值,下面贴代码
主要类如下:
import java.lang.reflect.Field;
imp
- SAP HANA数据存储:传统硬盘的瓶颈问题
蓝儿唯美
HANA
SAPHANA平台有各种各样的应用场景,这也意味着客户的实施方法有许多种选择,关键是如何挑选最适合他们需求的实施方案。
在 《Implementing SAP HANA》这本书中,介绍了SAP平台在现实场景中的运作原理,并给出了实施建议和成功案例供参考。本系列文章节选自《Implementing SAP HANA》,介绍了行存储和列存储的各自特点,以及SAP HANA的数据存储方式如何提升空间压
- Java Socket 多线程实现文件传输
随便小屋
javasocket
高级操作系统作业,让用Socket实现文件传输,有些代码也是在网上找的,写的不好,如果大家能用就用上。
客户端类:
package edu.logic.client;
import java.io.BufferedInputStream;
import java.io.Buffered
- java初学者路径
aijuans
java
学习Java有没有什么捷径?要想学好Java,首先要知道Java的大致分类。自从Sun推出Java以来,就力图使之无所不包,所以Java发展到现在,按应用来分主要分为三大块:J2SE,J2ME和J2EE,这也就是Sun ONE(Open Net Environment)体系。J2SE就是Java2的标准版,主要用于桌面应用软件的编程;J2ME主要应用于嵌入是系统开发,如手机和PDA的编程;J2EE
- APP推广
aoyouzi
APP推广
一,免费篇
1,APP推荐类网站自主推荐
最美应用、酷安网、DEMO8、木蚂蚁发现频道等,如果产品独特新颖,还能获取最美应用的评测推荐。PS:推荐简单。只要产品有趣好玩,用户会自主分享传播。例如足迹APP在最美应用推荐一次,几天用户暴增将服务器击垮。
2,各大应用商店首发合作
老实盯着排期,多给应用市场官方负责人献殷勤。
3,论坛贴吧推广
百度知道,百度贴吧,猫扑论坛,天涯社区,豆瓣(
- JSP转发与重定向
百合不是茶
jspservletJava Webjsp转发
在servlet和jsp中我们经常需要请求,这时就需要用到转发和重定向;
转发包括;forward和include
例子;forwrad转发; 将请求装法给reg.html页面
关键代码;
req.getRequestDispatcher("reg.html
- web.xml之jsp-config
bijian1013
javaweb.xmlservletjsp-config
1.作用:主要用于设定JSP页面的相关配置。
2.常见定义:
<jsp-config>
<taglib>
<taglib-uri>URI(定义TLD文件的URI,JSP页面的tablib命令可以经由此URI获取到TLD文件)</tablib-uri>
<taglib-location>
TLD文件所在的位置
- JSF2.2 ViewScoped Using CDI
sunjing
CDIJSF 2.2ViewScoped
JSF 2.0 introduced annotation @ViewScoped; A bean annotated with this scope maintained its state as long as the user stays on the same view(reloads or navigation - no intervening views). One problem w
- 【分布式数据一致性二】Zookeeper数据读写一致性
bit1129
zookeeper
很多文档说Zookeeper是强一致性保证,事实不然。关于一致性模型请参考http://bit1129.iteye.com/blog/2155336
Zookeeper的数据同步协议
Zookeeper采用称为Quorum Based Protocol的数据同步协议。假如Zookeeper集群有N台Zookeeper服务器(N通常取奇数,3台能够满足数据可靠性同时
- Java开发笔记
白糖_
java开发
1、Map<key,value>的remove方法只能识别相同类型的key值
Map<Integer,String> map = new HashMap<Integer,String>();
map.put(1,"a");
map.put(2,"b");
map.put(3,"c"
- 图片黑色阴影
bozch
图片
.event{ padding:0; width:460px; min-width: 460px; border:0px solid #e4e4e4; height: 350px; min-heig
- 编程之美-饮料供货-动态规划
bylijinnan
动态规划
import java.util.Arrays;
import java.util.Random;
public class BeverageSupply {
/**
* 编程之美 饮料供货
* 设Opt(V’,i)表示从i到n-1种饮料中,总容量为V’的方案中,满意度之和的最大值。
* 那么递归式就应该是:Opt(V’,i)=max{ k * Hi+Op
- ajax大参数(大数据)提交性能分析
chenbowen00
WebAjax框架浏览器prototype
近期在项目中发现如下一个问题
项目中有个提交现场事件的功能,该功能主要是在web客户端保存现场数据(主要有截屏,终端日志等信息)然后提交到服务器上方便我们分析定位问题。客户在使用该功能的过程中反应点击提交后反应很慢,大概要等10到20秒的时间浏览器才能操作,期间页面不响应事件。
根据客户描述分析了下的代码流程,很简单,主要通过OCX控件截屏,在将前端的日志等文件使用OCX控件打包,在将之转换为
- [宇宙与天文]在太空采矿,在太空建造
comsci
我们在太空进行工业活动...但是不太可能把太空工业产品又运回到地面上进行加工,而一般是在哪里开采,就在哪里加工,太空的微重力环境,可能会使我们的工业产品的制造尺度非常巨大....
地球上制造的最大工业机器是超级油轮和航空母舰,再大些就会遇到困难了,但是在空间船坞中,制造的最大工业机器,可能就没
- ORACLE中CONSTRAINT的四对属性
daizj
oracleCONSTRAINT
ORACLE中CONSTRAINT的四对属性
summary:在data migrate时,某些表的约束总是困扰着我们,让我们的migratet举步维艰,如何利用约束本身的属性来处理这些问题呢?本文详细介绍了约束的四对属性: Deferrable/not deferrable, Deferred/immediate, enalbe/disable, validate/novalidate,以及如
- Gradle入门教程
dengkane
gradle
一、寻找gradle的历程
一开始的时候,我们只有一个工程,所有要用到的jar包都放到工程目录下面,时间长了,工程越来越大,使用到的jar包也越来越多,难以理解jar之间的依赖关系。再后来我们把旧的工程拆分到不同的工程里,靠ide来管理工程之间的依赖关系,各工程下的jar包依赖是杂乱的。一段时间后,我们发现用ide来管理项程很不方便,比如不方便脱离ide自动构建,于是我们写自己的ant脚本。再后
- C语言简单循环示例
dcj3sjt126com
c
# include <stdio.h>
int main(void)
{
int i;
int count = 0;
int sum = 0;
float avg;
for (i=1; i<=100; i++)
{
if (i%2==0)
{
count++;
sum += i;
}
}
avg
- presentModalViewController 的动画效果
dcj3sjt126com
controller
系统自带(四种效果):
presentModalViewController模态的动画效果设置:
[cpp]
view plain
copy
UIViewController *detailViewController = [[UIViewController al
- java 二分查找
shuizhaosi888
二分查找java二分查找
需求:在排好顺序的一串数字中,找到数字T
一般解法:从左到右扫描数据,其运行花费线性时间O(N)。然而这个算法并没有用到该表已经排序的事实。
/**
*
* @param array
* 顺序数组
* @param t
* 要查找对象
* @return
*/
public stati
- Spring Security(07)——缓存UserDetails
234390216
ehcache缓存Spring Security
Spring Security提供了一个实现了可以缓存UserDetails的UserDetailsService实现类,CachingUserDetailsService。该类的构造接收一个用于真正加载UserDetails的UserDetailsService实现类。当需要加载UserDetails时,其首先会从缓存中获取,如果缓存中没
- Dozer 深层次复制
jayluns
VOmavenpo
最近在做项目上遇到了一些小问题,因为架构在做设计的时候web前段展示用到了vo层,而在后台进行与数据库层操作的时候用到的是Po层。这样在业务层返回vo到控制层,每一次都需要从po-->转化到vo层,用到BeanUtils.copyProperties(source, target)只能复制简单的属性,因为实体类都配置了hibernate那些关联关系,所以它满足不了现在的需求,但后发现还有个很
- CSS规范整理(摘自懒人图库)
a409435341
htmlUIcss浏览器
刚没事闲着在网上瞎逛,找了一篇CSS规范整理,粗略看了一下后还蛮有一定的道理,并自问是否有这样的规范,这也是初入前端开发的人一个很好的规范吧。
一、文件规范
1、文件均归档至约定的目录中。
具体要求通过豆瓣的CSS规范进行讲解:
所有的CSS分为两大类:通用类和业务类。通用的CSS文件,放在如下目录中:
基本样式库 /css/core
- C++动态链接库创建与使用
你不认识的休道人
C++dll
一、创建动态链接库
1.新建工程test中选择”MFC [dll]”dll类型选择第二项"Regular DLL With MFC shared linked",完成
2.在test.h中添加
extern “C” 返回类型 _declspec(dllexport)函数名(参数列表);
3.在test.cpp中最后写
extern “C” 返回类型 _decls
- Android代码混淆之ProGuard
rensanning
ProGuard
Android应用的Java代码,通过反编译apk文件(dex2jar、apktool)很容易得到源代码,所以在release版本的apk中一定要混淆一下一些关键的Java源码。
ProGuard是一个开源的Java代码混淆器(obfuscation)。ADT r8开始它被默认集成到了Android SDK中。
官网:
http://proguard.sourceforge.net/
- 程序员在编程中遇到的奇葩弱智问题
tomcat_oracle
jquery编程ide
现在收集一下:
排名不分先后,按照发言顺序来的。
1、Jquery插件一个通用函数一直报错,尤其是很明显是存在的函数,很有可能就是你没有引入jquery。。。或者版本不对
2、调试半天没变化:不在同一个文件中调试。这个很可怕,我们很多时候会备份好几个项目,改完发现改错了。有个群友说的好: 在汤匙
- 解决maven-dependency-plugin (goals "copy-dependencies","unpack") is not supported
xp9802
dependency
解决办法:在plugins之前添加如下pluginManagement,二者前后顺序如下:
[html]
view plain
copy
<build>
<pluginManagement