初等数论 课堂笔记 第三章 -- 欧拉函数一节的若干练习

练习

  1. 计算 φ ( 60 ) \varphi \left( 60 \right) φ(60)

      将 60 60 60写成标准分解式
    60 = 2 2 × 3 × 5 60={ {2}^{2}}\times 3\times 5 60=22×3×5

    1. 法一(计算过程中出现分式)
      φ ( 60 ) = 60 × ( 1 − 1 2 ) ( 1 − 1 3 ) ( 1 − 1 5 ) = 60 × 1 2 × 2 3 × 4 5 = 16 \varphi \left( 60 \right)=60\times \left( 1-\frac{1}{2} \right)\left( 1-\frac{1}{3} \right)\left( 1-\frac{1}{5} \right)=60\times \frac{1}{2}\times \frac{2}{3}\times \frac{4}{5}=16 φ(60)=60×(121)(131)(151)=60×21×32×54=16
    2. 法二(计算过程中不出现分式)
      φ ( 60 ) = φ ( 2 2 ) φ ( 3 ) φ ( 5 ) = ( 2 2 − 2 ) ( 3 − 1 ) ( 5 − 1 ) = 2 × 2 × 4 = 16 \varphi \left( 60 \right)=\varphi \left( { {2}^{2}} \right)\varphi \left( 3 \right)\varphi \left( 5 \right)=\left( { {2}^{2}}-2 \right)\left( 3-1 \right)\left( 5-1 \right)=2\times 2\times 4=16 φ(60)=φ(22)φ(3)φ(5)=(222)(31)(51)=2×2×4=16

  2. n ∈ Z > 0 n\in { {\mathbb{Z}}_{>0}} nZ>0 φ ( n ) = 8 \varphi \left( n \right)=8 φ(n)=8,求 n n n

      设 n n n的标准分解式为
    n = p 1 e 1 ⋯ p k e k n={ {p}_{1}}^{ { {e}_{1}}}\cdots { {p}_{k}}^{ { {e}_{k}}} n=p1e1pkek
    则有
    φ ( n ) = [ p 1 e 1 − 1 ( p 1 − 1 ) ] ⋯ [ p k e k − 1 ( p k − 1 ) ] = 8 ⇒ ( p i − 1 ) ∣ 8   ⇒ p i − 1 ≤ 8 ,   p i ≤ 9 ⇒   p i ∈ { 2 , 3 , 5 , 7 } ⇒ p i − 1 ∈ { 1 , 2 , 4 , 6 } \begin{aligned} & \varphi \left( n \right)=\left[ { {p}_{1}}^{ { {e}_{1}}-1}\left( { {p}_{1}}-1 \right) \right]\cdots \left[ { {p}_{k}}^{ { {e}_{k}}-1}\left( { {p}_{k}}-1 \right) \right]=8 \\ & \Rightarrow \left. \left( { {p}_{i}}-1 \right) \right|8\text{ }\Rightarrow { {p}_{i}}-1\le 8,\text{ }{ {p}_{i}}\le 9 \\ & \Rightarrow \text{ }{ {p}_{i}}\in \left\{ 2,3,5,7 \right\} \\ & \Rightarrow { {p}_{i}}-1\in \left\{ 1,2,4,6 \right\} \\ \end{aligned} φ(n)=[p1e11(p11)][pkek1(pk1)]=8(pi1)8 pi18, pi9 pi{ 2,3,5,7}pi1{ 1,2,4,6}
    由于 6 ∣ 8 6\cancel{|}8 6 8,因此有 p i − 1 ≠ 6   ⇒   p i ≠ 7 { {p}_{i}}-1\ne 6\text{ }\Rightarrow \text{ }{ {p}_{i}}\ne 7 pi1=6  pi=7。因此设 n = 2 a 3 b 5 c n={ {2}^{a}}{ {3}^{b}}{ {5}^{c}} n=2a3b5c a , b , c ≥ 0 a,b,c\ge 0 a,b,c0
    b ≥ 2 ,   3 ∣ 3 b − 1 ∣ φ ( 3 b ) ∣ 8 b\ge 2,\text{ }\left. 3 \right|\left. { {3}^{b-1}} \right|\left. \varphi \left( { {3}^{b}} \right) \right|8 b2, 33b1φ(3b)8,矛盾,于是有 b ∈ { 0 , 1 } b\in \left\{ 0,1 \right\} b{ 0,1}
    c ≥ 2 c\ge 2 c2 5 ∣ 5 c − 1 ∣ φ ( 5 c ) ∣ 8 \left. \left. 5 \right|{ {5}^{c-1}} \right|\left. \varphi \left( { {5}^{c}} \right) \right|8 55c1φ(5c)8,矛盾,于是有 c ∈ { 0 , 1 } c\in \left\{ 0,1 \right\} c{ 0,1}
    进行分类讨论如下。

    1. b = c = 0 b=c=0 b=c=0
      1. a = 0 a=0 a=0时, n = 1 n=1 n=1
        φ ( n ) = φ ( 1 ) = 1 ≠ 8 \varphi \left( n \right)=\varphi \left( 1 \right)=1\ne 8 φ(n)=φ(1)=1=8
      2. a ≠ 0 a\ne 0 a=0时, n = 2 a n={ {2}^{a}} n=2a
        φ ( n ) = 2 a − 1 ( 2 − 1 ) = 2 a − 1 = 8   ⇒   a − 1 = 3   ⇒   a = 4   ⇒   n = 2 4 = 16 \varphi \left( n \right)={ {2}^{a-1}}\left( 2-1 \right)={ {2}^{a-1}}=8\text{ }\Rightarrow \text{ }a-1=3\text{ }\Rightarrow \text{ }a=4\text{ }\Rightarrow \text{ }n={ {2}^{4}}=16 φ(n)=2a1(21)=2a1=8  a1=3  a=4  n=24=16
    2. b = 0 ,   c = 1 b=0,\text{ }c=1 b=0, c=1
      1. a = 0 a=0 a=0时,有 n = 5 n=5 n=5
        φ ( n ) = φ ( 5 ) = 4 \varphi \left( n \right)=\varphi \left( 5 \right)=4 φ(n)=φ(5)=4
      2. a ≠ 0 a\ne 0 a=0时,则有 n = 2 a × 5 n={ {2}^{a}}\times 5 n=2a×5
        φ ( n ) = 2 a − 1 ( 2 − 1 ) ( 5 − 1 ) = 2 a + 1 = 8   ⇒   a + 1 = 3   ⇒   a = 2   ⇒   n = 2 2 ⋅ 5 = 20 \varphi \left( n \right)={ {2}^{a-1}}\left( 2-1 \right)\left( 5-1 \right)={ {2}^{a+1}}=8\text{ }\Rightarrow \text{ }a+1=3\text{ }\Rightarrow \text{ }a=2\text{ }\Rightarrow \text{ }n={ {2}^{2}}\centerdot 5=20 φ(n)=2a1(21)(51)=2a+1=8  a+1=3  a=2  n=225=20
    3. b = 1 ,   c = 0 b=1,\text{ }c=0 b=1, c=0
      1. a = 0 a=0 a=0时,有 n = 3 n=3 n=3
        φ ( n ) = φ ( 3 ) = 2 \varphi \left( n \right)=\varphi \left( 3 \right)=2 φ(n)=φ(3)=2
      2. a ≠ 0 a\ne 0 a=0时,则有 n = 2 a × 3 n={ {2}^{a}}\times 3 n=2a×3
        φ ( n ) = 2 a − 1 ( 2 − 1 ) ( 3 − 1 ) = 2 a = 8   ⇒   a = 3   ⇒   n = 2 3 × 3 = 24 \varphi \left( n \right)={ {2}^{a-1}}\left( 2-1 \right)\left( 3-1 \right)={ {2}^{a}}=8\text{ }\Rightarrow \text{ }a=3\text{ }\Rightarrow \text{ }n={ {2}^{3}}\times 3=24 φ(n)=2a1(21)(31)=2a=

你可能感兴趣的:(初等数论,数学,数论)