- GPT-4 在 AIGC 中的微调技巧:让模型更懂你的需求
AIGC应用创新大全
AI人工智能与大数据应用开发MCP&Agent云算力网络AIGCai
GPT-4在AIGC中的微调技巧:让模型更懂你的需求关键词:GPT-4、AIGC、模型微调、监督学习、指令优化、过拟合预防、个性化生成摘要:AIGC(人工智能生成内容)正在重塑内容创作行业,但通用的GPT-4模型可能无法精准匹配你的垂直需求——比如写电商爆款文案时总“跑题”,或生成技术文档时专业术语不够。本文将用“教小朋友学画画”的通俗类比,从微调的底层逻辑讲到实战技巧,带你掌握让GPT-4“更懂
- AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容
AI大模型应用工坊
AI大模型开发实战AIGCchatgptai
AIGC内容生成实战:如何用ChatGPT+DALL·E打造高转化内容关键词:AIGC、ChatGPT、DALL·E、内容生成、高转化营销、多模态协同、提示词工程摘要:随着AIGC(人工智能生成内容)技术的爆发式发展,ChatGPT(文本生成)与DALL·E(图像生成)的组合已成为内容创作领域的“黄金搭档”。本文将深度解析二者的协同原理,结合实战案例演示从需求分析到内容落地的全流程,并揭示提升内容
- 【大模型微调实战】4. P-Tuning爆款文案生成:让模型学会小红书“爽感”写作,转化率提升300%
AI_DL_CODE
大模型微调P-Tuning小红书文案爆款生成情绪强化自然语言生成提示工程
摘要:在内容营销竞争白热化的当下,普通文案已难以突破流量壁垒。本文聚焦P-Tuning技术在小红书爆款文案生成中的落地应用,通过参数化提示向量优化,将抽象的“爽感”写作转化为可量化、可训练的技术指标。文中提出“六步成文法”,从情绪化数据集构建到爆款元素复刻,完整拆解如何用RTX3060级显卡实现0.1%参数量微调,使文案点击率从2.1%提升至8.7%,爆文率提高5倍,单条文案带货超8万元。核心创新
- 【人工智能入门必看的最全Python编程实战(1)】
DFCED
人工智能python开发语言深度学习找工作就业
--------------------------------------------------------------------------------------------------------------------1.AIGC未来发展前景未完持续…1.1人工智能相关科研重要性拥有一篇人工智能科研论文及专利软著竞赛是保研考研留学深造以及找工作的关键门票!!!拥有一篇人工智能科研论文
- 9、Docker Compose 实战
小醉你真好
#部署不求人docker容器运维
DockerCompose实战教程(含完整Nginx案例+配置项详解)适合读者:开发者、后端工程师、运维工程师、初学者环境要求:CentOS9+Docker已安装教程亮点:实战驱动、配置项详解、挂载说明、可直接复制使用标签:#Docker#DockerCompose#运维实战#Nginx部署一、什么是DockerCompose?DockerCompose是Docker官方推出的多容器应用编排工具,
- LLaMA-Factory微调教程1:LLaMA-Factory安装及使用
Cachel wood
LLM和AIGCllamapython开发语言react.jsjavascript前端microsoft
文章目录环境搭建LLaMA-Factory安装教程模型大小选择环境搭建Windows系统RTX4060Ti(16G显存)python3.10cuda=12.6cudnntorch==2.7.1+cu126torchvision==0.22.1+cu126torchaudio==2.7.1+cu126PSC:\Users\18098>nvidia-smiTueJul2201:52:192025+<
- AGI和AIGC傻傻分不清楚,一篇文章告诉你如何分辨!
Look!我们的大模型商业化落地产品更多AI资讯请关注Free三天集训营助教在线为您火热答疑什么是AGI(人工通用智能)?AGI是ArtificialGeneralIntelligence的缩写,中文翻译为“通用人工智能”,该术语指的是机器能够完成人类能够完成的任何智力任务的能力。与狭义的人工智能(ANI)不同,狭义的人工智能是为特定领域或问题而设计的,而AGI旨在实现一般的认知能力,能够适应任
- 2025年海外短剧CPS分销系统开发:技术架构与商业化实战指南
一、市场爆发:万亿级赛道的结构性机遇2025年海外短剧市场迎来指数级增长,SensorTower数据显示,仅第一季度应用内购收入就达7亿美元,全年预计突破45亿美元。美国贡献49%收入,东南亚以9%增速成为新兴增长极。这种爆发式增长源于三大驱动力:用户行为变迁:全球短视频用户突破20亿,微短剧月活用户仅8000万,渗透率不足10%,存在11倍增长空间技术赋能创新:AI生成内容(AIGC)降低制作成
- 5个必知的AIGC工具,轻松打造爆款虚拟偶像
AI原生应用开发
AI原生应用开发实战AIGCai
5个必知的AIGC工具,轻松打造爆款虚拟偶像关键词:AIGC工具、虚拟偶像、AI生成内容、数字人建模、智能交互、语音合成、动画生成摘要:本文深度解析5款前沿AIGC工具在虚拟偶像打造中的核心应用,涵盖从形象设计、语音生成到动态交互的全流程技术实现。通过MidJourney、D-ID、MetaHuman、RunwayML、VoiceMaker等工具的原理剖析、操作指南及实战案例,揭示如何利用AI技术
- AIGC 领域 AI 写作在电商文案中的应用技巧
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGC人工智能easyuiai
AIGC领域AI写作在电商文案中的应用技巧关键词:AIGC、AI写作、电商文案、内容生成、自然语言处理、营销自动化、个性化推荐摘要:本文深入探讨了AIGC(人工智能生成内容)技术在电商文案创作中的应用技巧。文章首先介绍了AIGC的基本概念和发展现状,然后详细分析了AI写作在电商领域的核心应用场景和技术原理。通过具体的算法解析、数学模型和实际案例,展示了如何利用AI技术提升电商文案的创作效率和质量。
- AIGC时代,营销人需要掌握的5项新技能
SuperAGI架构师的AI实验室
AI大模型应用开发宝典AIGCai
AIGC时代,营销人需要掌握的5项新技能关键词:AIGC、营销转型、内容生成、数据驱动、人机协作、技能升级、数字营销摘要:随着生成式人工智能(AIGC)技术的快速发展,营销行业正在经历前所未有的变革。本文详细分析了在AIGC时代营销人必须掌握的5项核心新技能,包括AIGC工具应用、数据思维、创意管理、人机协作和伦理意识。通过生动的案例和实用的建议,帮助营销从业者顺利实现技能升级,把握AI时代的营销
- AIGC领域MCP模型上下文协议:数据处理的新方案
AI大模型应用工坊
AIGCai
AIGC领域MCP模型上下文协议:数据处理的新方案关键词:AIGC、MCP模型、上下文协议、多模态数据处理、动态上下文管理、长序列建模、语义连贯性摘要:随着AIGC(人工智能生成内容)技术的快速发展,多模态生成、长文本创作、跨场景对话等任务对上下文管理提出了更高要求。传统上下文处理方案因碎片化、语义断层、动态适应性差等问题,难以满足复杂场景需求。本文聚焦AIGC领域的MCP(Multi-Conte
- 【大模型LLM学习】function call/agent学习记录
威化饼的一隅
大模型LLM学习agentlangchain意图识别functioncall工具调用
【大模型LLM学习】functioncall/agent学习记录0前言1langchain实现functioncall2调用本地模型3微调本地模型3.1few-shot调用Claude生成Q-A对3.2tools格式3.3agent微调格式3.4swift微调p.s.0前言 记录一下使用langchain做简单的functioncall/agent(或者说意图识别,如果函数有返回值再进行summ
- Python Pandas.cut函数解析与实战教程
皓月照山川
pandaspythonpandas开发语言
PythonPandas.cut函数解析与实战教程摘要pandas.cut是数据分析工具库Pandas中一个极其强大且常用的函数。它的核心功能是将连续的数值型数据根据指定的间断点(bins)进行分割,转换成离散化的区间类别(categoricaldata)。这种操作在数据预处理、特征工程和数据可视化中至关重要,例如,将用户的年龄分段、将考试分数评级、或将销售额划分为不同的等级。本文章将从基础用法到
- 大模型QLoRA微调——基于Qwen2-7B的自动化病历摘要生成系统
01项目简介(1)项目背景医疗文档中包含大量的诊疗信息,例如疾病诊断、手术名称、解剖部位、药物使用以及影像和实验室检查结果。这些信息是医疗数据分析的核心,但由于医疗文本内容复杂、格式多样,提取这些关键内容具有一定挑战。为此,本项目基于Qwen-7B大语言模型,通过QLoRA微调,使其从医疗文档中识别并提取这些信息。(2)数据集介绍本项目在Yidu-S4K数据集上进行指令微调任务,该数据共计包含10
- AI大模型实战教程:打造未来客服机器人,让传统智能客服成为历史!
前言本篇文章,我们重点围绕客服场景,详细介绍如何通过AI大模型替代传统智能客服系统。传统智能客服系统主要包括知识库、机器人、人工坐席、智能质检、工单管理等核心模块。虽然智能客服已经是一个发展了很多年的成熟领域,但仍然面临非常多的痛点。第一,机器人配置成本高。传统智能客服往往需要穷举业务上的各种问题和答案,提前准备好大量的FAQ,甚至每个问题还要提供10个以上的相似问。因为机器人并没有真正理解用户提
- YOLOv5激活函数替换与模型变体实验实战教程
机 _ 长
YOLO极致优化实战YOLO深度学习算法
YOLOv5激活函数替换与模型变体实验实战教程本教程面向已具备YOLOv5训练经验的开发者,系统讲解如何在YOLOv5中替换激活函数、构建模型变体,并结合本项目实际文件和命令,突出实用性和可操作性。内容涵盖激活函数原理、替换方法、配置文件讲解、训练实操、源码解读、实验对比与常见问题排查。完整代码见文末1.激活函数原理简介激活函数是深度神经网络中非线性建模的关键组件。常见激活函数包括:ReLU:简单
- 字节的机器人模型 GR-3
三谷秋水
机器学习计算机视觉大模型机器人语言模型计算机视觉人工智能机器学习
25年7月字节发布技术报告“GR-3TechnicalReport”。这是字节在通才机器人策略方面的最新进展,即GR-3的开发。GR-3是一个大规模的视觉-语言-动作(VLA)模型。它展现出卓越的泛化能力,能够泛化至新物体、新环境以及涉及抽象概念的指令。此外,它能够利用极少的人类轨迹数据进行高效微调,从而快速且经济高效地适应新环境。GR-3还擅长处理长范围和灵巧的任务,包括需要双手操作和移动的任务
- 大模型微调:从零到实践,掌握AI大模型的核心技能
之之为知知
12大模型人工智能机器学习特征工程pytorch深度学习大模型微调
大模型微调:从零到实践,掌握AI大模型的核心技能引言大规模语言模型(如DeepSeek、通义千问)的出现,彻底改变了自然语言处理的格局。这些模型不仅在学术界取得了突破性进展,在工业界也得到了广泛应用。对于许多初学者来说,直接训练一个完整的大型语言模型可能显得遥不可及。幸运的是,微调(Fine-tuning)技术为我们提供了一条捷径,让我们可以基于已有的预训练模型,针对特定任务进行调整,从而快速实现
- Kettle8.2ETL项目实战教程:快速掌握数据整合利器,提升数据处理效率
Kettle8.2ETL项目实战教程:快速掌握数据整合利器,提升数据处理效率去发现同类优质开源项目:https://gitcode.com/Kettle8.2ETL项目实战教程,帮助您轻松学习ETL基本流程,高效整合各种数据源,实现数据转换与输出。项目介绍在现代数据分析和大数据处理中,ETL(Extract,Transform,Load)技术扮演着至关重要的角色。Kettle8.2ETL项目实战教
- Java PDF文件解析实战教程及源代码
小虾汉斯
本文还有配套的精品资源,点击获取简介:本篇介绍如何使用Java编程语言解析PDF文件,特别强调了使用ApachePDFBox库的详细步骤。通过实际的源代码示例,涵盖从基本文档读取到复杂内容提取的所有操作,包括遍历PDF页面、获取文本内容和图像,以及解析元数据等。压缩包中包含了必要的库文件、日志框架,以及一个带有详细注释的Exec.java示例程序,方便开发者学习和实践PDF文档处理的技能。1.PD
- 百度大涨,AIGC视频生成模型蒸汽机将会给百度带来什么?
百度7月23日盘中表现强势,盘中一度涨4.49%。消息面上,百度旗下百度商业研发团队自研的AIGC视频生成模型蒸汽机(MuseSteamer)正式上线手机网页版,支持用户通过移动端一键生成电影级视频。百度的大涨我们该怎么分析?首先,百度股价的上涨反映了市场对其新推出的AIGC视频生成模型蒸汽机的高度认可和期待。这款模型能够支持用户通过移动端一键生成电影级视频,显示出百度在人工智能技术应用领域的持续
- LLM微调训练指南
小小怪 @
人工智能自然语言处理
模型选择策略开源LLM的选择需综合评估任务需求与资源限制:LLaMA-2(7B/13B/70B):商用友好,推荐使用HuggingFace格式的社区变体(如NousResearch版本)Mistral(7B):Apache2.0许可,在推理和数学任务表现突出Falcon(7B/40B):商业授权宽松,特别适合多轮对话场景硬件匹配参考:NVIDIA3090可微调7B模型(QLoRA),A100建议尝
- 深度学习的图像分类项目在制造业场景下的数据需求量估算及实现方案(数据收集是The more the better 吗?)
shiter
人工智能系统解决方案与技术架构深度学习分类人工智能
文章大纲一、数据需求的关键影响因素二、无先验知识场景的数据需求估算优化策略与技术方案三、有先验知识场景的数据需求估算1.迁移学习(TransferLearning)2.少样本学习(Few-ShotLearning)3.预训练-微调范式四、实现方案与技术路线1.数据策略层2.模型架构层3.训练优化技术五、结论与实践建议无先验知识场景有先验知识场景✅**正确性校验**⚠️**可落地性勘误与补充****
- 创建全景图像的完整指南:Make-Panorama-Image实战教程
色空空色
本文还有配套的精品资源,点击获取简介:在IT领域,全景图像创建技术用于合并多张连续拍摄的照片以获得宽广视角。本教程将介绍使用Python和JupyterNotebook实现全景图像生成的步骤,包括图像对齐、融合、扭曲校正和裁剪调整。通过学习OpenCV、PIL/Pillow和scikit-image等库的使用,你将掌握创建和处理全景图像的技术。1.全景图像生成的步骤与原理全景图像(Panorama
- Prompt Engineering(提示词工程)基础了解
Fuly1024
LLMprompt
参考:https://blog.csdn.net/qq_56438555/article/details/1448865171.基础概念:提示词工程(promptEngineering)是指通过设计、优化输入给大语言模型的文本指令(即“提示词”),引导LLM输出我们期望的结果。让大模型在无需微调(Fine-tuning)的情况下,通过“更好的提问方式”完成复杂任务(开发潜力,不会的还是不会)。但是
- 9、LLaMA-Factory项目微调介绍
Andy_shenzl
大模型学习llamaLLaMAFactory微调大模型LoRA
1、LLaMAFactory介绍 LLaMAFactory是一个在GitHub上开源的项目,该项目给自身的定位是:提供一个易于使用的大语言模型(LLM)微调框架,支持LLaMA、Baichuan、Qwen、ChatGLM等架构的大模型。更细致的看,该项目提供了从预训练、指令微调到RLHF阶段的开源微调解决方案。截止目前(2024年3月1日)支持约120+种不同的模型和内置了60+的数据集,同时封
- ffmpeg-python 实战教程:从视频处理到流媒体应用
洪赫逊
ffmpeg-python实战教程:从视频处理到流媒体应用ffmpeg-python是一个基于FFmpeg的Python绑定库,它提供了简洁的API来处理音视频文件。本文将介绍该库的几种典型应用场景,帮助开发者快速掌握音视频处理的核心技术。基础视频信息获取使用ffprobe可以轻松获取视频文件的元数据信息,这是视频处理的第一步:probe=ffmpeg.probe('input.mp4')vide
- 2025最全Docker入门到实战教程:从安装到部署,一篇搞定!(Java项目实战版)
遇见伯灵说
容器dockerjava容器
一、Docker简介Docker是一个开源的容器化平台,它让应用程序的打包、分发和运行变得简单高效。与传统虚拟机相比,Docker更轻量、更快速,资源占用更少。✨Docker的优点轻量级:共享宿主机内核,启动速度极快。跨平台:只需打包一次,随处运行(支持Windows、Mac、Linux)。环境一致:避免“在我电脑上能跑”的尴尬。高效资源利用:比虚拟机占用更少的CPU、内存。强大的生态:Docke
- 用Python爬取中国航空客运量统计数据:从采集到可视化的完整实战教程
Python爬虫项目
python开发语言数据分析爬虫websocket
一、项目背景与目标随着中国经济的不断发展,航空运输作为国家基础设施的重要组成部分,承载了大量客运流量。了解航空客运量的变化趋势,对经济研究、交通预测、城市规划、投资分析等具有重要意义。然而,公开完整的航空客运数据常分布在不同的网站或动态页面中,不利于直接抓取和分析。因此,我们设计了一个Python爬虫项目,目标是:自动爬取中国民用航空局官网或其公开平台上公布的航空客运量月度数据;实现结构化数据提取
- 如何用ruby来写hadoop的mapreduce并生成jar包
wudixiaotie
mapreduce
ruby来写hadoop的mapreduce,我用的方法是rubydoop。怎么配置环境呢:
1.安装rvm:
不说了 网上有
2.安装ruby:
由于我以前是做ruby的,所以习惯性的先安装了ruby,起码调试起来比jruby快多了。
3.安装jruby:
rvm install jruby然后等待安
- java编程思想 -- 访问控制权限
百合不是茶
java访问控制权限单例模式
访问权限是java中一个比较中要的知识点,它规定者什么方法可以访问,什么不可以访问
一:包访问权限;
自定义包:
package com.wj.control;
//包
public class Demo {
//定义一个无参的方法
public void DemoPackage(){
System.out.println("调用
- [生物与医学]请审慎食用小龙虾
comsci
生物
现在的餐馆里面出售的小龙虾,有一些是在野外捕捉的,这些小龙虾身体里面可能带有某些病毒和细菌,人食用以后可能会导致一些疾病,严重的甚至会死亡.....
所以,参加聚餐的时候,最好不要点小龙虾...就吃养殖的猪肉,牛肉,羊肉和鱼,等动物蛋白质
- org.apache.jasper.JasperException: Unable to compile class for JSP:
商人shang
maven2.2jdk1.8
环境: jdk1.8 maven tomcat7-maven-plugin 2.0
原因: tomcat7-maven-plugin 2.0 不知吃 jdk 1.8,换成 tomcat7-maven-plugin 2.2就行,即
<plugin>
- 你的垃圾你处理掉了吗?GC
oloz
GC
前序:本人菜鸟,此文研究学习来自网络,各位牛牛多指教
1.垃圾收集算法的核心思想
Java语言建立了垃圾收集机制,用以跟踪正在使用的对象和发现并回收不再使用(引用)的对象。该机制可以有效防范动态内存分配中可能发生的两个危险:因内存垃圾过多而引发的内存耗尽,以及不恰当的内存释放所造成的内存非法引用。
垃圾收集算法的核心思想是:对虚拟机可用内存空间,即堆空间中的对象进行识别
- shiro 和 SESSSION
杨白白
shiro
shiro 在web项目里默认使用的是web容器提供的session,也就是说shiro使用的session是web容器产生的,并不是自己产生的,在用于非web环境时可用其他来源代替。在web工程启动的时候它就和容器绑定在了一起,这是通过web.xml里面的shiroFilter实现的。通过session.getSession()方法会在浏览器cokkice产生JESSIONID,当关闭浏览器,此
- 移动互联网终端 淘宝客如何实现盈利
小桔子
移動客戶端淘客淘寶App
2012年淘宝联盟平台为站长和淘宝客带来的分成收入突破30亿元,同比增长100%。而来自移动端的分成达1亿元,其中美丽说、蘑菇街、果库、口袋购物等App运营商分成近5000万元。 可以看出,虽然目前阶段PC端对于淘客而言仍旧是盈利的大头,但移动端已经呈现出爆发之势。而且这个势头将随着智能终端(手机,平板)的加速普及而更加迅猛
- wordpress小工具制作
aichenglong
wordpress小工具
wordpress 使用侧边栏的小工具,很方便调整页面结构
小工具的制作过程
1 在自己的主题文件中新建一个文件夹(如widget),在文件夹中创建一个php(AWP_posts-category.php)
小工具是一个类,想侧边栏一样,还得使用代码注册,他才可以再后台使用,基本的代码一层不变
<?php
class AWP_Post_Category extends WP_Wi
- JS微信分享
AILIKES
js
// 所有功能必须包含在 WeixinApi.ready 中进行
WeixinApi.ready(function(Api) {
// 微信分享的数据
var wxData = {
&nb
- 封装探讨
百合不是茶
JAVA面向对象 封装
//封装 属性 方法 将某些东西包装在一起,通过创建对象或使用静态的方法来调用,称为封装;封装其实就是有选择性地公开或隐藏某些信息,它解决了数据的安全性问题,增加代码的可读性和可维护性
在 Aname类中申明三个属性,将其封装在一个类中:通过对象来调用
例如 1:
//属性 将其设为私有
姓名 name 可以公开
- jquery radio/checkbox change事件不能触发的问题
bijian1013
JavaScriptjquery
我想让radio来控制当前我选择的是机动车还是特种车,如下所示:
<html>
<head>
<script src="http://ajax.googleapis.com/ajax/libs/jquery/1.7.1/jquery.min.js" type="text/javascript"><
- AngularJS中安全性措施
bijian1013
JavaScriptAngularJS安全性XSRFJSON漏洞
在使用web应用中,安全性是应该首要考虑的一个问题。AngularJS提供了一些辅助机制,用来防护来自两个常见攻击方向的网络攻击。
一.JSON漏洞
当使用一个GET请求获取JSON数组信息的时候(尤其是当这一信息非常敏感,
- [Maven学习笔记九]Maven发布web项目
bit1129
maven
基于Maven的web项目的标准项目结构
user-project
user-core
user-service
user-web
src
- 【Hive七】Hive用户自定义聚合函数(UDAF)
bit1129
hive
用户自定义聚合函数,用户提供的多个入参通过聚合计算(求和、求最大值、求最小值)得到一个聚合计算结果的函数。
问题:UDF也可以提供输入多个参数然后输出一个结果的运算,比如加法运算add(3,5),add这个UDF需要实现UDF的evaluate方法,那么UDF和UDAF的实质分别究竟是什么?
Double evaluate(Double a, Double b)
- 通过 nginx-lua 给 Nginx 增加 OAuth 支持
ronin47
前言:我们使用Nginx的Lua中间件建立了OAuth2认证和授权层。如果你也有此打算,阅读下面的文档,实现自动化并获得收益。SeatGeek 在过去几年中取得了发展,我们已经积累了不少针对各种任务的不同管理接口。我们通常为新的展示需求创建新模块,比如我们自己的博客、图表等。我们还定期开发内部工具来处理诸如部署、可视化操作及事件处理等事务。在处理这些事务中,我们使用了几个不同的接口来认证:
&n
- 利用tomcat-redis-session-manager做session同步时自定义类对象属性保存不上的解决方法
bsr1983
session
在利用tomcat-redis-session-manager做session同步时,遇到了在session保存一个自定义对象时,修改该对象中的某个属性,session未进行序列化,属性没有被存储到redis中。 在 tomcat-redis-session-manager的github上有如下说明: Session Change Tracking
As noted in the &qu
- 《代码大全》表驱动法-Table Driven Approach-1
bylijinnan
java算法
关于Table Driven Approach的一篇非常好的文章:
http://www.codeproject.com/Articles/42732/Table-driven-Approach
package com.ljn.base;
import java.util.Random;
public class TableDriven {
public
- Sybase封锁原理
chicony
Sybase
昨天在操作Sybase IQ12.7时意外操作造成了数据库表锁定,不能删除被锁定表数据也不能往其中写入数据。由于着急往该表抽入数据,因此立马着手解决该表的解锁问题。 无奈此前没有接触过Sybase IQ12.7这套数据库产品,加之当时已属于下班时间无法求助于支持人员支持,因此只有借助搜索引擎强大的
- java异常处理机制
CrazyMizzz
java
java异常关键字有以下几个,分别为 try catch final throw throws
他们的定义分别为
try: Opening exception-handling statement.
catch: Captures the exception.
finally: Runs its code before terminating
- hive 数据插入DML语法汇总
daizj
hiveDML数据插入
Hive的数据插入DML语法汇总1、Loading files into tables语法:1) LOAD DATA [LOCAL] INPATH 'filepath' [OVERWRITE] INTO TABLE tablename [PARTITION (partcol1=val1, partcol2=val2 ...)]解释:1)、上面命令执行环境为hive客户端环境下: hive>l
- 工厂设计模式
dcj3sjt126com
设计模式
使用设计模式是促进最佳实践和良好设计的好办法。设计模式可以提供针对常见的编程问题的灵活的解决方案。 工厂模式
工厂模式(Factory)允许你在代码执行时实例化对象。它之所以被称为工厂模式是因为它负责“生产”对象。工厂方法的参数是你要生成的对象对应的类名称。
Example #1 调用工厂方法(带参数)
<?phpclass Example{
- mysql字符串查找函数
dcj3sjt126com
mysql
FIND_IN_SET(str,strlist)
假如字符串str 在由N 子链组成的字符串列表strlist 中,则返回值的范围在1到 N 之间。一个字符串列表就是一个由一些被‘,’符号分开的自链组成的字符串。如果第一个参数是一个常数字符串,而第二个是type SET列,则 FIND_IN_SET() 函数被优化,使用比特计算。如果str不在strlist 或st
- jvm内存管理
easterfly
jvm
一、JVM堆内存的划分
分为年轻代和年老代。年轻代又分为三部分:一个eden,两个survivor。
工作过程是这样的:e区空间满了后,执行minor gc,存活下来的对象放入s0, 对s0仍会进行minor gc,存活下来的的对象放入s1中,对s1同样执行minor gc,依旧存活的对象就放入年老代中;
年老代满了之后会执行major gc,这个是stop the word模式,执行
- CentOS-6.3安装配置JDK-8
gengzg
centos
JAVA_HOME=/usr/java/jdk1.8.0_45
JRE_HOME=/usr/java/jdk1.8.0_45/jre
PATH=$PATH:$JAVA_HOME/bin:$JRE_HOME/bin
CLASSPATH=.:$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar:$JRE_HOME/lib
export JAVA_HOME
- 【转】关于web路径的获取方法
huangyc1210
Web路径
假定你的web application 名称为news,你在浏览器中输入请求路径: http://localhost:8080/news/main/list.jsp 则执行下面向行代码后打印出如下结果: 1、 System.out.println(request.getContextPath()); //可返回站点的根路径。也就是项
- php里获取第一个中文首字母并排序
远去的渡口
数据结构PHP
很久没来更新博客了,还是觉得工作需要多总结的好。今天来更新一个自己认为比较有成就的问题吧。 最近在做储值结算,需求里结算首页需要按门店的首字母A-Z排序。我的数据结构原本是这样的:
Array
(
[0] => Array
(
[sid] => 2885842
[recetcstoredpay] =&g
- java内部类
hm4123660
java内部类匿名内部类成员内部类方法内部类
在Java中,可以将一个类定义在另一个类里面或者一个方法里面,这样的类称为内部类。内部类仍然是一个独立的类,在编译之后内部类会被编译成独立的.class文件,但是前面冠以外部类的类名和$符号。内部类可以间接解决多继承问题,可以使用内部类继承一个类,外部类继承一个类,实现多继承。
&nb
- Caused by: java.lang.IncompatibleClassChangeError: class org.hibernate.cfg.Exten
zhb8015
maven pom.xml关于hibernate的配置和异常信息如下,查了好多资料,问题还是没有解决。只知道是包冲突,就是不知道是哪个包....遇到这个问题的分享下是怎么解决的。。
maven pom:
<dependency>
<groupId>org.hibernate</groupId>
<ar
- Spark 性能相关参数配置详解-任务调度篇
Stark_Summer
sparkcachecpu任务调度yarn
随着Spark的逐渐成熟完善, 越来越多的可配置参数被添加到Spark中来, 本文试图通过阐述这其中部分参数的工作原理和配置思路, 和大家一起探讨一下如何根据实际场合对Spark进行配置优化。
由于篇幅较长,所以在这里分篇组织,如果要看最新完整的网页版内容,可以戳这里:http://spark-config.readthedocs.org/,主要是便
- css3滤镜
wangkeheng
htmlcss
经常看到一些网站的底部有一些灰色的图标,鼠标移入的时候会变亮,开始以为是js操作src或者bg呢,搜索了一下,发现了一个更好的方法:通过css3的滤镜方法。
html代码:
<a href='' class='icon'><img src='utv.jpg' /></a>
css代码:
.icon{-webkit-filter: graysc