新型模型架构(参数化状态空间模型、状态空间模型变种)

文章目录

    • 参数化状态空间模型
    • 状态空间模型变种

    Transformer 模型自问世以来,在自然语言处理、计算机视觉等多个领域得到了广泛应用,并展现出卓越的数据表示与建模能力。然而,Transformer 的自注意力机制在计算每个词元时都需要利用到序列中所有词元的信息,这导致计算和存储复杂度随输入序列长度的平方级别增长。在处理长序列时,这种复杂性会消耗大量的计算资源与存储空间。为了解决这个问题,研究人员致力于新型模型架构的设计。这些新型模型大多基于参数化状态空间模型(State Space Model, SSM)进行设计,在长文本建模效率方面相比 Transformer 有了大幅改进,同时也保持了较好的序列建模能力。

新型模型架构(参数化状态空间模型、状态空间模型变种)_第1张图片 不同模型的比较(T 表示序列长度,H 表示输入表示的维度,N 表示状态 空间模型压缩后的维度,M 表示 Hyena 每个模块的层数)

参数化状态空间模型

    状态空间模型是一种动态时域模型,在控制系统、经济学等多个领域都有着广泛应用。近年来,深度学习领域也开始引入参数化状态

你可能感兴趣的:(LLM,语言模型,gpt,文心一言,prompt,embedding,AIGC,agi)