- MotionLCM 部署优化 踩坑解决bug
AI算法网奇
aigc与数字人深度学习宝典文生motion
目录依赖项windowstorchok:渲染黑白图问题解决:humanml3d:sentence-t5-large下载数据:报错:Nomodulenamed'sentence_transformers'继续报错:fromtransformers.integrationsimportCodeCarbonCallback解决方法:推理相关转mesh:module‘matplotlib.cm‘hasno
- python编程第十四课:数据可视化
小小源助手
Python代码实例信息可视化python开发语言
Python数据可视化:让数据“开口说话”在当今数据爆炸的时代,数据可视化已成为探索数据规律、传达数据信息的关键技术。Python凭借其丰富的第三方库,为数据可视化提供了强大而灵活的解决方案。本文将带你深入了解Matplotlib库的基础绘图、Seaborn库的高级可视化以及交互式可视化工具Plotly,帮助你通过图表清晰地展示数据背后的故事。一、Matplotlib库基础绘图Matplotlib
- Python数据可视化:用代码绘制数据背后的故事
AAEllisonPang
Python信息可视化python开发语言
引言:当数据会说话在数据爆炸的时代,可视化是解锁数据价值的金钥匙。Python凭借其丰富的可视化生态库,已成为数据科学家的首选工具。本文将带您从基础到高级,探索如何用Python将冰冷数字转化为引人入胜的视觉叙事。一、基础篇:二维可视化的艺术表达1.1Matplotlib:可视化领域的瑞士军刀importmatplotlib.pyplotaspltimportnumpyasnpx=np.linsp
- [ Pyqt连接数据库/excel ] : 在Pyqt中使用python连接数据库+excel读写并导入mysql+系统登录界面+pyqt多窗口切换。
rqtz
PyQt系列项目开发pyqtmysqlexcelpython数据库
前言:首先本文是自己的智能车系统项目的第三篇文章,换句话说,本文是基于前两篇文章的一个拓展,前两篇文章连接:一:智能车上位机系统,pyqt下的socket通信,python实现服务器+客户端,文本+视频不定长字节传输,超详细,小白都能看懂_pyqtsocket上位机显示波形-CSDN博客二:PyQt5使用matplotlib画图,并嵌入qt控件中,涉及使用消息队列与共享内存来进行进程间通信或线程间
- 老码农和你一起学AI:Python系列-Matplotlib 核心架构
chilavert318
熬之滴水穿石matplotlibpython
在数据可视化领域,Matplotlib就像一位全能的画家——它能画出折线图、柱状图等基础图表,也能创作热力图、3D图等复杂作品。但要真正用好这位“画家”,首先得理解它的“创作工具”:Figure与Axes对象的关系、绘图的基本流程、图表保存的关键参数,以及如何统一调整图表风格。这些基础架构知识,是从“能画图”到“画好图”的关键。一、Figure与Axes如果把Matplotlib的绘图过程比作在画
- Python代码库OpenCV之11 切割碑文
iCloudEnd
本文代码来自https://blog.csdn.net/u010095372/article/details/79420641源代码适用于python2,我做个简单修改测试图片测试图片代码#-*-coding:utf-8-*-importosimportnumpyasnpimportcv2.cv2ascvfrommatplotlibimportpyplotaspltimportheapqimpor
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- 基于孪生网络 (Siamese Network) 的人脸识别系统
DeniuHe
Pytorchpytorch
上一个帖子记录了基于普通CNN的人脸识别系统。但是,测试准确率实在太低了只有30%。这次使用孪生网络(SiameseNet)进行实现。代码实现使用了VGG19预训练模型作为特征提取器,通过对比学习来判断两张人脸图像是否属于同一人。整个代码分为数据准备、模型构建、训练和测试四个主要部分。importmatplotlib.pyplotaspltimporttorchfromtorchimportnnf
- python 柱状图 居中_Python matplotlib 柱状图
weixin_39796855
python柱状图居中
matplotlib是python最著名的绘图库,它提供了一整套和matlab相似的命令API,十分适合交互式地进行制图。而且也可以方便地将它作为绘图控件,嵌入GUI应用程序中。它的文档相当完备,并且Gallery页面中有上百幅缩略图,打开之后都有源程序。因此如果你需要绘制某种类型的图,只需要在这个页面中浏览/复制/粘贴一下,基本上都能搞定。这篇我们用matplotlib从构造最简单的bar一步一
- Python ffmpeg视频处理
程序媛一枚~
视频处理PythonOpenCVffmpegpython音视频
2.源码#coding=utf-8importffmpegimportgetpassimportsubprocessimportmatplotlib.pyplotaspltimportcv2importnumpyasnpimportos#ffmpeg相关的音视频操作指令函数#程序列表:'''comband_av音频视频合并comband_aa音频合并pick_v视频静音acceler
- PYTHON从入门到实践-16数据视图化展示
定制开发才有价值
pythonwindowsecharts
在数据分析和可视化领域,CSV和JSON是两种最常用的数据格式。本文将介绍如何使用Python处理这两种格式的数据,并利用Matplotlib和Cartopy等库生成专业的可视化图表。一、CSV数据处理与温度变化图1.1生成模拟天气数据我们首先创建一个生成模拟天气数据的Python脚本,将结果保存为CSV格式:python复制下载importcsvimportrandomfromdatetimei
- 机器学习-SVM支持向量机
支持向量机是一类监督学习算法,实现二分类,其决策边界是对学习样本求解的最大边距超平面。课程代码:importnumpyasnpmy_seed=2017np.random.seed(my_seed)importrandomrandom.seed(my_seed)importmatplotlibimportmatplotlib.pyplotaspltmatplotlib.rcParams['font.
- C++实战:数据标准化高效实现
DBSCAN基本DBSCAN(Density-BasedSpatialClusteringofApplicationswithNoise)是一种基于密度的聚类算法,适用于发现任意形状的簇并识别噪声点。核心参数包括:eps:邻域半径,决定样本的邻域范围。min_samples:核心点所需的最小邻域样本数。Python实现步骤安装依赖库pipinstallnumpymatplotlibscikit-l
- Scikitlearn:Python机器学习库
AI天才研究院
AI人工智能与大数据AI大模型企业级应用开发实战AI实战计算科学神经计算深度学习神经网络大数据人工智能大型语言模型AIAGILLMJavaPython架构设计AgentRPA
-Scikit-learn:Python机器学习库1.背景介绍1.1什么是Scikit-learnScikit-learn是一个基于Python语言的开源机器学习库。它建立在NumPy、SciPy和matplotlib等优秀的科学计算库之上,为用户提供了一系列高效的数据挖掘和数据分析工具,涵盖了分类、回归、聚类、降维、模型选择和预处理等机器学习的各个方面。Scikit-learn的目标是提供一个高
- python如何统计图片的颜色分布
detayun
Pythonpython开发语言
首先,确保你已经安装了必要的库:pipinstallpillownumpymatplotlib然后,使用以下Python代码来统计图片的颜色分布:fromPILimportImageimportnumpyasnpimportmatplotlib.pyplotaspltfromcollectionsimportCounterimportos#1.读取图片image_path='your_image.
- 数据可视化
一百天成为python专家
信息可视化numpy人工智能python机器学习开发语言
4.1可视化介绍为什么要进行数据可视化?数据可视化=把抽象的数据“看得见”目的是让数据背后的规律、异常、趋势一目了然错误案例举例:饼图太多分块→看不出比例柱状图颜色混乱→无法聚焦图表标题模糊不清→不知图中所指4.2Matplotlib可视化4.2.1Matplotlib简介什么是MatplotlibMatplotlib是一个Python绘图库,广泛用于创建各种类型的静态、动态和交互式图表。它是数据
- Matplotlib 全面使用指南
过往入尘土
matplotlib
安装与环境配置确保已安装Python3.6及以上版本。通过pip安装Matplotlib:pipinstallmatplotlib若需扩展功能(如3D绘图),可一并安装NumPy:pipinstallnumpy基础绘图折线图示例:importmatplotlib.pyplotaspltx=[1,2,3,4]y=[10,20,25,30]plt.plot(x,y,color='blue',lines
- 实践-python实现抽样分布描述及实践
HenlyX
本周系实践课程,主要参考https://www.jb51.net/article/169033.htm中的实现。作业来源:数据科学家联盟公号importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromscipyimportstatsdf=pd.read_excel('D:/Users/Desktop/Desktop/作业/data.
- MNIST 手写数字识别模型分析
橘子编程
Python学习指南pythonmatplotlib
功能概述这段代码实现了一个基于TensorFlow和Keras的MNIST手写数字识别模型。主要功能包括:加载并预处理MNIST数据集构建一个简单的全连接神经网络模型训练模型并评估其性能使用训练好的模型进行预测保存和加载模型代码解析1.导入必要的库importmatplotlibimporttensorflow.kerasaskerasimporttensorflowastfimportnumpy
- Python图像数据处理
功能概述这段代码是一个完整的图像数据处理流程,主要用于准备猫狗分类任务的训练数据。主要功能包括:加载猫和狗的图片数据集展示样本图片将图片统一调整为标准尺寸创建训练数据集保存处理后的数据以便后续使用详细代码解析1.导入必要的库importnumpyasnpimportmatplotlib.pyplotaspltimportosimportcv2fromtqdmimporttqdmnumpy:用于数值
- 卷积神经网络实现猫狗分类
新手且大师
cnn分类人工智能
一.环境配置以及数据加载importtorchimporttorch.nnasnnimporttorch.optimasoptimimporttorchvision.transformsastransformsfromtorchvision.datasetsimportImageFolderfromtorch.utils.dataimportDataLoaderimportmatplotlib.p
- 使用Python实现音频降噪
在音频处理领域,背景噪声是一个常见的问题。为了提高音频的质量,我们需要对音频进行降噪处理。本文将介绍如何使用Python实现音频降噪。依赖库安装在开始之前,我们需要安装以下依赖库:pydub:用于音频文件的读取和写入。numpy:用于数组和数值计算。noisereduce:用于音频降噪。matplotlib:用于绘制波形图。使用以下命令安装依赖库:pipinstallpydubnumpynoise
- 用 K-means 算法实现水果分堆
wh_xia_jun
AI+医疗算法kmeans机器学习
先看运行效果:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeans#生成模拟数据(两个高斯分布的混合点集)np.random.seed(42)X1=np.random.randn(100,2)+np.array([2,2])#第一簇数据,中心在(2,2)X2=np.random.randn(100,2)
- BSCAN 在糖尿病患者数据聚类分析中的应用
wh_xia_jun
AI+医疗机器学习支持向量机人工智能
完整代码:importnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportDBSCANfromsklearn.preprocessingimportStandardScalerfromsklearn.datasetsimportmake_blobs#设置随机种子,确保结果可复现np.random.seed(42)#1.生成模拟
- python办自动化--读取邮箱中特定的邮件,并下载特定的附件
宝山哥哥
python办公自动化python自动化信息可视化
系列文章目录python办公自动化–数据可视化(pandas+matplotlib)–生成条形图和饼状图python办公自动化–数据可视化(pandas+matplotlib)–生成折线图python办公自动化–数据可视化(pandas读取excel文件,matplotlib生成可视化图表)python办公自动化-openpyxl学习-工资表生成工资条python办公自动化–使用将csv大文件分割
- 「日拱一码」035 机器学习——调参过程可视化
胖达不服输
「日拱一码」机器学习人工智能调参过程可视化神经网络python模型可解释性
目录超参数搜索的3D曲面可视化交互式3D可视化神经网络学习率的3D可视化SVM超参数的3D决策边界可视化超参数优化的3D动画超参数搜索的3D曲面可视化##超参数搜索的3D曲面可视化importnumpyasnpimportmatplotlib.pyplotaspltfrommpl_toolkits.mplot3dimportAxes3Dfromsklearn.datasetsimportmake_
- 数据质量是机器学习项目的核心痛点,AI技术能提供智能化解决方案。
zzywxc787
pythonpandasnumpy人工智能自动化运维AI编程
一、数据质量诊断系统(Python实现)importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltfromsklearn.clusterimportKMeansfromsklearn.ensembleimportIsolationForestfromtensorflow.keras.modelsimportSequentialfromte
- Python打卡day6 描述性统计
荣582
python学习打卡python开发语言机器学习
@疏锦行针对其他特征绘制单特征图和特征和标签的关系图,并且试图观察出一些有意思的结论单特征可视化importmatplotlib.pyplotaspltimportseabornassnsimportpandasaspd#读取数据,这里假设数据文件名为data.csv,你需要根据实际情况修改文件名data=pd.read_csv('data.csv')#连续变量可视化示例plt.figure(fi
- 数据可视化——折线图
殇城碎梦.
python基础学习python
#导入所需要的包importmatplotlib.pyplotasplt#设置图表样式plt.style.use('seaborn-v0_8')#增强中文字体配置-添加更多系统字体确保兼容性#增强中文字体配置-优先Windows系统常用字体plt.rcParams["font.family"]=["sans-serif"]plt.rcParams["font.sans-serif"]=["SimH
- Python Matplotlib中的fontdict参数说明
@MMiL
PyBuildpythonmatplotlibpandasnumpy
文章目录1fontdict参数的常用属性1.1使用示例1.2其他注意事项1.3结合其他参数各位老板好,在Python的Matplotlib库中,fontdict参数用于定义文本属性的字典。这些属性包括字体大小、颜色、样式等,主要用于控制标题、标签和其他文本元素的显示效果。通过将fontdict传递给相关函数(如plt.title、plt.xlabel等),可以自定义文本的外观。1fontdict参
- [黑洞与暗粒子]没有光的世界
comsci
无论是相对论还是其它现代物理学,都显然有个缺陷,那就是必须有光才能够计算
但是,我相信,在我们的世界和宇宙平面中,肯定存在没有光的世界....
那么,在没有光的世界,光子和其它粒子的规律无法被应用和考察,那么以光速为核心的
&nbs
- jQuery Lazy Load 图片延迟加载
aijuans
jquery
基于 jQuery 的图片延迟加载插件,在用户滚动页面到图片之后才进行加载。
对于有较多的图片的网页,使用图片延迟加载,能有效的提高页面加载速度。
版本:
jQuery v1.4.4+
jQuery Lazy Load v1.7.2
注意事项:
需要真正实现图片延迟加载,必须将真实图片地址写在 data-original 属性中。若 src
- 使用Jodd的优点
Kai_Ge
jodd
1. 简化和统一 controller ,抛弃 extends SimpleFormController ,统一使用 implements Controller 的方式。
2. 简化 JSP 页面的 bind, 不需要一个字段一个字段的绑定。
3. 对 bean 没有任何要求,可以使用任意的 bean 做为 formBean。
使用方法简介
- jpa Query转hibernate Query
120153216
Hibernate
public List<Map> getMapList(String hql,
Map map) {
org.hibernate.Query jpaQuery = entityManager.createQuery(hql);
if (null != map) {
for (String parameter : map.keySet()) {
jp
- Django_Python3添加MySQL/MariaDB支持
2002wmj
mariaDB
现状
首先,
[email protected] 中默认的引擎为 django.db.backends.mysql 。但是在Python3中如果这样写的话,会发现 django.db.backends.mysql 依赖 MySQLdb[5] ,而 MySQLdb 又不兼容 Python3 于是要找一种新的方式来继续使用MySQL。 MySQL官方的方案
首先据MySQL文档[3]说,自从MySQL
- 在SQLSERVER中查找消耗IO最多的SQL
357029540
SQL Server
返回做IO数目最多的50条语句以及它们的执行计划。
select top 50
(total_logical_reads/execution_count) as avg_logical_reads,
(total_logical_writes/execution_count) as avg_logical_writes,
(tot
- spring UnChecked 异常 官方定义!
7454103
spring
如果你接触过spring的 事物管理!那么你必须明白 spring的 非捕获异常! 即 unchecked 异常! 因为 spring 默认这类异常事物自动回滚!!
public static boolean isCheckedException(Throwable ex)
{
return !(ex instanceof RuntimeExcep
- mongoDB 入门指南、示例
adminjun
javamongodb操作
一、准备工作
1、 下载mongoDB
下载地址:http://www.mongodb.org/downloads
选择合适你的版本
相关文档:http://www.mongodb.org/display/DOCS/Tutorial
2、 安装mongoDB
A、 不解压模式:
将下载下来的mongoDB-xxx.zip打开,找到bin目录,运行mongod.exe就可以启动服务,默
- CUDA 5 Release Candidate Now Available
aijuans
CUDA
The CUDA 5 Release Candidate is now available at http://developer.nvidia.com/<wbr></wbr>cuda/cuda-pre-production. Now applicable to a broader set of algorithms, CUDA 5 has advanced fe
- Essential Studio for WinRT网格控件测评
Axiba
JavaScripthtml5
Essential Studio for WinRT界面控件包含了商业平板应用程序开发中所需的所有控件,如市场上运行速度最快的grid 和chart、地图、RDL报表查看器、丰富的文本查看器及图表等等。同时,该控件还包含了一组独特的库,用于从WinRT应用程序中生成Excel、Word以及PDF格式的文件。此文将对其另外一个强大的控件——网格控件进行专门的测评详述。
网格控件功能
1、
- java 获取windows系统安装的证书或证书链
bewithme
windows
有时需要获取windows系统安装的证书或证书链,比如说你要通过证书来创建java的密钥库 。
有关证书链的解释可以查看此处 。
public static void main(String[] args) {
SunMSCAPI providerMSCAPI = new SunMSCAPI();
S
- NoSQL数据库之Redis数据库管理(set类型和zset类型)
bijian1013
redis数据库NoSQL
4.sets类型
Set是集合,它是string类型的无序集合。set是通过hash table实现的,添加、删除和查找的复杂度都是O(1)。对集合我们可以取并集、交集、差集。通过这些操作我们可以实现sns中的好友推荐和blog的tag功能。
sadd:向名称为key的set中添加元
- 异常捕获何时用Exception,何时用Throwable
bingyingao
用Exception的情况
try {
//可能发生空指针、数组溢出等异常
} catch (Exception e) {
 
- 【Kafka四】Kakfa伪分布式安装
bit1129
kafka
在http://bit1129.iteye.com/blog/2174791一文中,实现了单Kafka服务器的安装,在Kafka中,每个Kafka服务器称为一个broker。本文简单介绍下,在单机环境下Kafka的伪分布式安装和测试验证 1. 安装步骤
Kafka伪分布式安装的思路跟Zookeeper的伪分布式安装思路完全一样,不过比Zookeeper稍微简单些(不
- Project Euler
bookjovi
haskell
Project Euler是个数学问题求解网站,网站设计的很有意思,有很多problem,在未提交正确答案前不能查看problem的overview,也不能查看关于problem的discussion thread,只能看到现在problem已经被多少人解决了,人数越多往往代表问题越容易。
看看problem 1吧:
Add all the natural num
- Java-Collections Framework学习与总结-ArrayDeque
BrokenDreams
Collections
表、栈和队列是三种基本的数据结构,前面总结的ArrayList和LinkedList可以作为任意一种数据结构来使用,当然由于实现方式的不同,操作的效率也会不同。
这篇要看一下java.util.ArrayDeque。从命名上看
- 读《研磨设计模式》-代码笔记-装饰模式-Decorator
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.io.BufferedOutputStream;
import java.io.DataOutputStream;
import java.io.FileOutputStream;
import java.io.Fi
- Maven学习(一)
chenyu19891124
Maven私服
学习一门技术和工具总得花费一段时间,5月底6月初自己学习了一些工具,maven+Hudson+nexus的搭建,对于maven以前只是听说,顺便再自己的电脑上搭建了一个maven环境,但是完全不了解maven这一强大的构建工具,还有ant也是一个构建工具,但ant就没有maven那么的简单方便,其实简单点说maven是一个运用命令行就能完成构建,测试,打包,发布一系列功
- [原创]JWFD工作流引擎设计----节点匹配搜索算法(用于初步解决条件异步汇聚问题) 补充
comsci
算法工作PHP搜索引擎嵌入式
本文主要介绍在JWFD工作流引擎设计中遇到的一个实际问题的解决方案,请参考我的博文"带条件选择的并行汇聚路由问题"中图例A2描述的情况(http://comsci.iteye.com/blog/339756),我现在把我对图例A2的一个解决方案公布出来,请大家多指点
节点匹配搜索算法(用于解决标准对称流程图条件汇聚点运行控制参数的算法)
需要解决的问题:已知分支
- Linux中用shell获取昨天、明天或多天前的日期
daizj
linuxshell上几年昨天获取上几个月
在Linux中可以通过date命令获取昨天、明天、上个月、下个月、上一年和下一年
# 获取昨天
date -d 'yesterday' # 或 date -d 'last day'
# 获取明天
date -d 'tomorrow' # 或 date -d 'next day'
# 获取上个月
date -d 'last month'
#
- 我所理解的云计算
dongwei_6688
云计算
在刚开始接触到一个概念时,人们往往都会去探寻这个概念的含义,以达到对其有一个感性的认知,在Wikipedia上关于“云计算”是这么定义的,它说:
Cloud computing is a phrase used to describe a variety of computing co
- YII CMenu配置
dcj3sjt126com
yii
Adding id and class names to CMenu
We use the id and htmlOptions to accomplish this. Watch.
//in your view
$this->widget('zii.widgets.CMenu', array(
'id'=>'myMenu',
'items'=>$this-&g
- 设计模式之静态代理与动态代理
come_for_dream
设计模式
静态代理与动态代理
代理模式是java开发中用到的相对比较多的设计模式,其中的思想就是主业务和相关业务分离。所谓的代理设计就是指由一个代理主题来操作真实主题,真实主题执行具体的业务操作,而代理主题负责其他相关业务的处理。比如我们在进行删除操作的时候需要检验一下用户是否登陆,我们可以删除看成主业务,而把检验用户是否登陆看成其相关业务
- 【转】理解Javascript 系列
gcc2ge
JavaScript
理解Javascript_13_执行模型详解
摘要: 在《理解Javascript_12_执行模型浅析》一文中,我们初步的了解了执行上下文与作用域的概念,那么这一篇将深入分析执行上下文的构建过程,了解执行上下文、函数对象、作用域三者之间的关系。函数执行环境简单的代码:当调用say方法时,第一步是创建其执行环境,在创建执行环境的过程中,会按照定义的先后顺序完成一系列操作:1.首先会创建一个
- Subsets II
hcx2013
set
Given a collection of integers that might contain duplicates, nums, return all possible subsets.
Note:
Elements in a subset must be in non-descending order.
The solution set must not conta
- Spring4.1新特性——Spring缓存框架增强
jinnianshilongnian
spring4
目录
Spring4.1新特性——综述
Spring4.1新特性——Spring核心部分及其他
Spring4.1新特性——Spring缓存框架增强
Spring4.1新特性——异步调用和事件机制的异常处理
Spring4.1新特性——数据库集成测试脚本初始化
Spring4.1新特性——Spring MVC增强
Spring4.1新特性——页面自动化测试框架Spring MVC T
- shell嵌套expect执行命令
liyonghui160com
一直都想把expect的操作写到bash脚本里,这样就不用我再写两个脚本来执行了,搞了一下午终于有点小成就,给大家看看吧.
系统:centos 5.x
1.先安装expect
yum -y install expect
2.脚本内容:
cat auto_svn.sh
#!/bin/bash
- Linux实用命令整理
pda158
linux
0. 基本命令 linux 基本命令整理
1. 压缩 解压 tar -zcvf a.tar.gz a #把a压缩成a.tar.gz tar -zxvf a.tar.gz #把a.tar.gz解压成a
2. vim小结 2.1 vim替换 :m,ns/word_1/word_2/gc  
- 独立开发人员通向成功的29个小贴士
shoothao
独立开发
概述:本文收集了关于独立开发人员通向成功需要注意的一些东西,对于具体的每个贴士的注解有兴趣的朋友可以查看下面标注的原文地址。
明白你从事独立开发的原因和目的。
保持坚持制定计划的好习惯。
万事开头难,第一份订单是关键。
培养多元化业务技能。
提供卓越的服务和品质。
谨小慎微。
营销是必备技能。
学会组织,有条理的工作才是最有效率的。
“独立
- JAVA中堆栈和内存分配原理
uule
java
1、栈、堆
1.寄存器:最快的存储区, 由编译器根据需求进行分配,我们在程序中无法控制.2. 栈:存放基本类型的变量数据和对象的引用,但对象本身不存放在栈中,而是存放在堆(new 出来的对象)或者常量池中(字符串常量对象存放在常量池中。)3. 堆:存放所有new出来的对象。4. 静态域:存放静态成员(static定义的)5. 常量池:存放字符串常量和基本类型常量(public static f