行列式定义参考
d e t ( A ) = ∑ i 1 , i 2 , ⋯ , i n ( − 1 ) σ ( i 1 , ⋯ , i n ) a 1 , i 1 a 2 , i 2 , ⋯ , a n , i n det(A) =\sum_{i_1,i_2,\cdots,i_n } (-1)^{\sigma(i_1,\cdots,i_n)} a_{1,i_1}a_{2,i_2},\cdots, a_{n,i_n} det(A)=i1,i2,⋯,in∑(−1)σ(i1,⋯,in)a1,i1a2,i2,⋯,an,in
i 1 , ⋯ , i n i_1,\cdots,i_n i1,⋯,in 是 1 , ⋯ , n 1,\cdots,n 1,⋯,n 的排列.
参数
x (Tensor):输入一个或批量矩阵。x 的形状应为 [*, M, M],其中 * 为零或更大的批次维度,数据类型支持 float32、float64。
返回
Tensor,输出矩阵的行列式值 Shape 为 [*] 。
多个方阵的行列式
import paddle
paddle.seed(2023)
x = paddle.randn([4,3,3])
A = paddle.linalg.det(x)
print(A)
常用方阵的行列式:
import paddle
paddle.seed(2023)
x = paddle.randn([3,3])
A = paddle.linalg.det(x)
print(A)
矩阵的算子范数(也称为矩阵范数或诱导范数)是衡量矩阵作为线性算子作用在向量上的“放大”程度的一种度量。算子范数依赖于向量范数的定义,常见的算子范数包括以下几种:
矩阵的核范数(Nuclear Norm)是矩阵理论中的一个重要概念,特别是在低秩矩阵恢复和压缩感知等领域。核范数是矩阵奇异值之和,它可以看作是矩阵的秩的一种凸近似。
对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其核范数定义为:
∥ A ∥ ∗ = ∑ i = 1 min ( m , n ) σ i ( A ) \|A\|_* = \sum_{i=1}^{\min(m,n)} \sigma_i(A) ∥A∥∗=i=1∑min(m,n)σi(A)
其中, σ i ( A ) \sigma_i(A) σi(A)表示矩阵 A A A 的第 i i i 个奇异值,奇异值是矩阵 A A A 的奇异值分解(SVD)中的非负对角元素。
核范数的一些重要性质包括:
矩阵的F范数,也称为Frobenius范数,是矩阵元素平方和的平方根。它将矩阵视为一个长向量,并计算其欧几里得范数。对于任意矩阵 A ∈ R m × n A \in \mathbb{R}^{m \times n} A∈Rm×n,其Frobenius范数定义为:
∥ A ∥ F = ∑ i = 1 m ∑ j = 1 n ∣ a i j ∣ 2 \|A\|_F = \sqrt{\sum_{i=1}^{m} \sum_{j=1}^{n} |a_{ij}|^2} ∥A∥F=i=1∑mj=1∑n∣aij∣2
其中, a i j a_{ij} aij 表示矩阵 A A A 的第 i i i 行第 j j j 列的元素。
Frobenius范数的一些重要性质包括:
paddle.linalg.norm(x, p=None, axis=None, keepdim=False, name=None)
将计算给定 Tensor 的矩阵范数(Frobenius 范数, Nuclear 范数或 p 范数)和向量范数(向量 1 范数、2 范数、或者通常的 p 范数)。
该函数计算的是向量范数还是矩阵范数,确定方法如下: - 如果 axis 是 int 类型,计算向量范数 - 如果 axis 是二维数组,计算矩阵范数 - 如果 axis 为 None,x 会被压缩成一维向量然后计算向量范数
Paddle 支持以下范数:
参数
x (Tensor) - 输入 Tensor。维度为多维,数据类型为 float32 或 float64。
p (int|float|string,可选) - 范数(ord)的种类。目前支持的值为fro(Frobenius范数) 、 nuc(核范数)、inf、-inf、0、1、2,和任何实数 p 对应的 p 范数。默认值为 None。
axis (int|list|tuple,可选) - 使用范数计算的轴。如果 axis 为 None,则忽略 input 的维度,将其当做向量来计算。如果 axis 为 int 或者只有一个元素的 list|tuple,norm API 会计算输入 Tensor 的向量范数。如果 axis 为包含两个元素的 list,API 会计算输入 Tensor 的矩阵范数。当 axis < 0 时,实际的计算维度为 rank(input) + axis。默认值为 None 。
keepdim (bool,可选) - 是否在输出的 Tensor 中保留和输入一样的维度,默认值为 False。当 keepdim 为 False 时,输出的 Tensor 会比输入 input 的维度少一些。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,在指定 axis 上进行范数计算的结果,与输入 input 数据类型相同。
import paddle
x = paddle.arange(24, dtype="float32").reshape([2, 3, 4]) - 12
print(x)
# compute frobenius norm along last two dimensions.
out_fro = paddle.linalg.norm(x, p='fro', axis=[0,1])
print(out_fro)
# compute 2-order vector norm along last dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=-1)
print(out_pnorm)
# compute 2-order norm along [0,1] dimension.
out_pnorm = paddle.linalg.norm(x, p=2, axis=[0,1])
print(out_pnorm)
# compute inf-order norm
out_pnorm = paddle.linalg.norm(x, p=float("inf"))
print(out_pnorm)
out_pnorm = paddle.linalg.norm(x, p=float("inf"), axis=0)
print(out_pnorm)
# compute -inf-order norm
out_pnorm = paddle.linalg.norm(x, p=-float("inf"))
print(out_pnorm)
out_pnorm = paddle.linalg.norm(x, p=-float("inf"), axis=0)
print(out_pnorm)
c o n d ( A , p ) = sup x ≠ 0 ∥ A ∥ p ∥ A − 1 ∥ p \mathrm{cond}(A,p) =\sup_{x\neq 0} \frac{\|A\|_p}{\|A^{-1}\|_p} cond(A,p)=x=0sup∥A−1∥p∥A∥p
其中 ∥ ⋅ ∥ p \| \cdot \|_p ∥⋅∥p 是矩阵的 p p p 范数。
根据范数种类 p 计算一个或一批矩阵的条件数,也可以通过 paddle.cond 来调用。
参数
x (Tensor):输入可以是形状为 (, m, n) 的矩阵 Tensor, * 为零或更大的批次维度,此时 p 为 2 或 -2;也可以是形状为 (, n, n) 的可逆(批)方阵 Tensor,此时 p 为任意已支持的值。数据类型为 float32 或 float64 。
p (float|string,可选):范数种类。目前支持的值为 fro(Frobenius范数) 、 nuc(核范数) 、 1 、 -1 、 2 、 -2 、 inf 、 -inf。默认值为 None,即范数种类为 2 。
name (str,可选) - 具体用法请参见 Name,一般无需设置,默认值为 None。
返回
Tensor,条件数的计算结果,数据类型和输入 x 的一致。
import paddle
paddle.seed(2023)
x = paddle.to_tensor([[1., 0, -1], [0, 1, 0], [1, 0, 1]])
# compute conditional number when p is None
out = paddle.linalg.cond(x)
print(out)
# compute conditional number when order of the norm is 'fro'
out_fro = paddle.linalg.cond(x, p='fro')
print(out_fro)
# compute conditional number when order of the norm is 'nuc'
out_nuc = paddle.linalg.cond(x, p='nuc')
print(out_nuc)
# compute conditional number when order of the norm is 1
out_1 = paddle.linalg.cond(x, p=1)
print(out_1)
# compute conditional number when order of the norm is -1
out_minus_1 = paddle.linalg.cond(x, p=-1)
print(out_minus_1)
# compute conditional number when order of the norm is 2
out_2 = paddle.linalg.cond(x, p=2)
print(out_2)
# compute conditional number when order of the norm is -1
out_minus_2 = paddle.linalg.cond(x, p=-2)
print(out_minus_2)
# compute conditional number when order of the norm is inf
out_inf = paddle.linalg.cond(x, p=float("inf"))
print(out_inf)
# compute conditional number when order of the norm is -inf
out_minus_inf = paddle.linalg.cond(x, p=-float("inf"))
print(out_minus_inf)
a = paddle.randn([2, 4, 4])
print(a)
a_cond_fro = paddle.linalg.cond(a, p='fro')
print(a_cond_fro)
b = paddle.randn([2, 3, 4])
print(b)
b_cond_2 = paddle.linalg.cond(b, p=2)
print(b_cond_2)
一组向量被称为线性无关,如果其中没有任何一个向量可以表示为其他向量的线性组合, 例如
α 1 = ∑ i = 2 n k i α i \alpha_1 = \sum_{i=2}^n k_i\alpha_i α1=∑i=2nkiαi。
矩阵的行向量组和列向量组
给定一个 m × n m \times n m×n 矩阵 A A A ,它包含 m m m 个行向量和 n n n 个列向量。
极大线性无关组
在一组向量中,极大线性无关组是指包含最多线性无关向量的子集。添加任何额外的向量都会使该组变得线性相关。
矩阵 A A A 的秩是指其行向量组或列向量组中极大线性无关组的大小。
矩阵的行秩等于其列秩,统称为矩阵的秩。
import paddle
a = paddle.eye(10)
b = paddle.linalg.matrix_rank(a)
print(b)
c = paddle.ones(shape=[3, 4, 5, 5])
d = paddle.linalg.matrix_rank(c, tol=0.01, hermitian=True)
print(d)