- 机器学习必备数学与编程指南:从入门到精通
a小胡哦
机器学习基础机器学习人工智能
一、机器学习核心数学基础1.线性代数(神经网络的基础)必须掌握:矩阵运算(乘法、转置、逆)向量空间与线性变换特征值分解与奇异值分解(SVD)为什么重要:神经网络本质就是矩阵运算学习技巧:用NumPy实际操作矩阵运算2.概率与统计(模型评估的关键)核心概念:条件概率与贝叶斯定理概率分布(正态、泊松、伯努利)假设检验与p值应用场景:朴素贝叶斯、A/B测试3.微积分(优化算法的基础)重点掌握:导数与偏导
- Python数据可视化:用代码绘制数据背后的故事
AAEllisonPang
Python信息可视化python开发语言
引言:当数据会说话在数据爆炸的时代,可视化是解锁数据价值的金钥匙。Python凭借其丰富的可视化生态库,已成为数据科学家的首选工具。本文将带您从基础到高级,探索如何用Python将冰冷数字转化为引人入胜的视觉叙事。一、基础篇:二维可视化的艺术表达1.1Matplotlib:可视化领域的瑞士军刀importmatplotlib.pyplotaspltimportnumpyasnpx=np.linsp
- BGE-M3模型结合Milvus向量数据库强强联合实现混合检索
在基于生成式人工智能的应用开发中,通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤,因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息(或选择合适的工具)以给出用户最符合预期的回答。在本篇文章中,我将尽可能详细地介绍想达成准确识别用户提问意图的解决方案之一,即基于功能强大的BGE-M3模型和Milvus向量数据库实现混合检索(稠密向量densevect
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 手把手教你搭建AI搜图系统:基于BGE-VL+Milvus的完整实现指南
引言图像搜索有何价值?•帮你找身份证:在海量相册里搜索身份证•电商神器:淘宝"拍立淘"让你拍照变订单•设计师救星:3秒找到可商用的高清素材图老搜索vs新搜索的区别老搜索:像查字典,必须输入正确关键词新搜索:像跟人聊天,图片/语音都能搜,还能理解表情包为什么选BGE-VL+Milvus这个王炸组合?•就像给搜索引擎装了"人脑"(BGE-VL理解图片内涵)•加上"闪电手"Milvus(毫秒级匹配海量图
- 基于Milvus和BGE-VL模型实现以图搜图
时间的痕迹01
milvus
背景最近再做项目的时候,里面有个AI检索的功能,其中一个点就是要实现以图搜图,也就是用户上传一张图,要找出相似度比较高的图,比如下面这样,第一张是原图,第二张是图中的一部分,用户上传第二张图,要能检索到第一张完整的图实现思路整个实现的核心就是用向量检索,也就是在运营端上传第一张图片的时候,先把整个图片转换为向量,存储到向量数据库中,然后用户在检索的时候,把第二张图再转换为向量,与第一张图的向量进行
- 使用 PyTorch 和 Pandas 进行 Kaggle 房价预测
Clang's Blog
AIpytorchpandas人工智能
文章目录1、环境设置2、数据下载3、数据预处理4、模型构建5、训练和验证6、训练模型并生成预测结果7、完整代码在本篇博文中,我们将探索如何使用PyTorch和Pandas库,构建一个用于Kaggle房价预测的模型。我们将详细讨论数据加载、预处理、模型构建、训练、验证及最终预测的全过程。1、环境设置我们首先需要导入所需的库,包括用于数据处理的pandas和numpy,以及用于深度学习的torch。i
- python进行常见的数学计算(方差,一元二次方程,求导,积分等等)
ccut 第一混
python
代码如下:importnumpyasnpimportmathimportcmathimportscipy#平均数defaverage(lst):sum_lst=0forninlst:sum_lst=sum_lst+nreturnsum_lst/len(lst)#方差defvariance(lst):average_lst=average(lst)sum_variance=0forninlst:su
- 解决:FFmpeg推流时报错:Broken Pipe
-米兰的小铁匠
ffmpegpython
最初利用如下代码进行FFmpeg推流:importsubprocessimportcv2importnumpyasnpimporttimeclassRTMPStreamer:def__init__(self,rtmp_url,width,height,fps=30):self.rtmp_url=rtmp_urlself.width=widthself.height=heightself.fps=f
- 轻松入门 NumPy(二):数组的升维降维操作
Sunhen_Qiletian
numpy
目录引言一.数组的维度、形状和轴1.1数组的维度(Dimensions)1.2数组的形状(Shape)1.3数组的轴(Axes)二.数组的升维(DimensionalityExpansion)2.1升维的操作方法2.2升维的实际应用三.数组的降维(DimensionalityReduction)3.1降维的操作方法1.使用reshape()降维2.flatten()方法3.2降维的实际应用四.总结
- pandas.to_sql mysql_pandas to_sql
weixin_39929595
pandas.to_sqlmysql
实例:importpymysqlimportpandasaspdimportnumpyasnpfromsqlalchemyimportcreate_enginedf=pd.DataFrame([[1,"Bob",0],[2,"Kim",1]],columns=["id","name","sex"])dfidnamesex01Bob012Kim1fromsqlalchemyimportcreate_
- Cpython
先编译在运行fromdistutils.coreimportsetup,ExtensionfromCython.Buildimportcythonizeimportnumpysetup(ext_modules=cythonize(Extension('dot_cython',sources=['dot_cython.pyx'],language='c',include_dirs=[numpy.ge
- Python代码库OpenCV之11 切割碑文
iCloudEnd
本文代码来自https://blog.csdn.net/u010095372/article/details/79420641源代码适用于python2,我做个简单修改测试图片测试图片代码#-*-coding:utf-8-*-importosimportnumpyasnpimportcv2.cv2ascvfrommatplotlibimportpyplotaspltimportheapqimpor
- 玩转 Milvus(一):解锁向量数据库的秘密,拥抱Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
引言:向量数据库,AI时代的“超级引擎”想象一下,你上传一张猫咪照片,系统瞬间从百万张图片中挑出最相似的几张;或者在购物APP中点开一件T恤,推荐栏立刻展示你心动的搭配。这些智能体验的背后,藏着一个秘密武器——高维向量。通过深度学习模型,文本、图像、音频被转化为一串数字,捕捉它们的“灵魂”。但如何在海量向量中快速找到“最像”的那一个?传统数据库如MySQL或MongoDB束手无策,而向量数据库横空
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- day 34 打卡
weixin_39908253
AI学习笔记python机器学习
day21常见的降维算法#先运行之前预处理好的代码importpandasaspdimportnumpyasnpimportmatplotlib.pyplotaspltimportseabornassnsimportwarningswarnings.filterwarnings('ignore')#设置中文字体plt.rcParams['font.sans-serif']=['SimHei']pl
- svm支持向量机实例--线性非线性实例代码可运行
fromsklearnimportsvmimportnumpyasnpimportsklearn#因为Python中的sklearn库也集成了SVM算法,所以在Python中一样可以使用支持向量机做分类#取数据集path=r'D:\svm\iris.data'#Iris.data的数据格式如下:共5列,前4列为样本特征,第5列为类别,分别有三种类别Iris-setosa,Iris-versicol
- 论文复现 Rank consistent ordinal regression for neural networks withapplication to age estimation
DeniuHe
Pytorch算法
importtorchimporttorch.nn.functionalasFfromtorchimportnnfromtorch.autogradimportVariableimportpandasaspdimportnumpyasnpfromsklearn.model_selectionimporttrain_test_splitfromsklearn.metricsimportaccurac
- Pytorch实现目标检测
importosimportrandomimportpandasaspdimportnumpyasnpimportcv2fromsklearn.model_selectionimporttrain_test_splitimporttorchfromtorch.utils.dataimportDataset,DataLoaderimporttorch.nnasnnimporttorch.nn.fun
- Python中如何打开查看.npz文件
SEVEN是7
python开发语言
.npz文件是NumPy的压缩存档格式,可以包含多个数组(一个.npz文件包含几个数组)一、导入包importnumpyasnp二、数据加载poem=np.load('tang.npz',allow_pickle=True)使用NumPy的load()函数加载.npz文件:file_path:指定要加载的文件路径allow_pickle=True:允许加载包含Python对象(pickle)的数据
- Python 数据科学与可视化工具箱 (一) - 数组创建:array(), arange(), zeros(), ones(), linspace()
文章目录1.为什么需要NumPy数组创建函数?2.核心数组创建函数详解2.1`np.array()`:从现有数据创建数组2.2`np.arange()`:创建等差序列2.3`np.zeros()`:创建全零数组2.4`np.ones()`:创建全一数组2.5`np.linspace()`:创建等间隔序列3.其他常用数组创建函数(简要提及)总结练习题练习题答案创作不易,请各位看官顺手点点关注,不胜感
- PyZDDE:Python控制Zemax光学设计软件的实践指南
鄧寜
本文还有配套的精品资源,点击获取简介:Zemax软件广泛应用于光学设计领域,提供DDE接口实现与外部程序交互。PyZDDE是一个Python库,允许用户通过DDE通信协议控制Zemax,以自动化执行设计、优化和分析任务。本压缩包包含Python脚本实例,展示如何利用PyZDDE进行文件操作、模型构建、优化与分析、数据提取以及自动化流程,旨在提升光学工程师的工作效率。结合NumPy、SciPy和ma
- Python ffmpeg视频处理
程序媛一枚~
视频处理PythonOpenCVffmpegpython音视频
2.源码#coding=utf-8importffmpegimportgetpassimportsubprocessimportmatplotlib.pyplotaspltimportcv2importnumpyasnpimportos#ffmpeg相关的音视频操作指令函数#程序列表:'''comband_av音频视频合并comband_aa音频合并pick_v视频静音acceler
- 层次分析法代码笔记
骑驴看星星a
numpypython开发语言笔记
层次分析法一、核心在层次分析法中,通过算术平均法、几何平均法、特征值法计算指标权重,再通过一致性检验确保判断矩阵逻辑合理,为多准则决策提供量化依据。二、代码(一)一致性检验(判断矩阵合理性)importnumpyasnp#1.定义判断矩阵A=np.array([[1,2,3,5],[1/2,1,1/2,2],[1/3,2,1,1/2],[1/5,1/2,1/2,1]])#2.获取矩阵阶数(指标数量
- 排名前十的编程语言及其详细对比
NurDroid
开发语言
根据2025年4月的最新TIOBE排行榜以及其他综合榜单,当前排名前十的编程语言及其详细对比如下:1.Python•排名:第1位•核心特点:简洁语法、动态类型、丰富的生态库(如NumPy、TensorFlow)。•应用领域:AI/机器学习、数据分析、自动化脚本、Web开发(Django/Flask框架)。•性能:解释型语言,执行速度较慢,但开发效率极高,适合快速原型设计。•趋势:持续领跑AI领域,
- 如何解决pip安装报错ModuleNotFoundError: No module named ‘numpy’问题
万粉变现经纪人
全栈Bug解决方案专栏pipnumpypycharmpythonpandasscrapybeautifulsoup
【Python系列Bug修复PyCharm控制台pipinstall报错】如何解决pip安装报错ModuleNotFoundError:Nomodulenamed‘numpy’问题摘要在使用PyCharm开发Python项目时,常常需要通过pipinstall安装各类第三方包。然而,当安装完毕后,控制台仍然提示ModuleNotFoundError:Nomodulenamed‘numpy’,这让许
- 深度学习-数据操作
数据操作首先,我们来介绍n维数组,也称为张量(tensor)。GPU很好地支持加速计算,而NumPy仅支持CPU计算;并且张量类支持自动微分。这些功能使得张量类更适合深度学习。张量表示一个由数值组成的数组,这个数组可能有多个维度。具有一个轴的张量对应数学上的向量(vector);具有两个轴的张量对应数学上的矩阵(matrix);具有两个轴以上的张量没有特殊的数学名称。上图分别是1维到5维的张量的表
- python学习DAY22打卡
星仔编程
python学习打卡学习
作业:自行学习参考如何使用kaggle平台,写下使用注意点,并对下述比赛提交代码kaggle泰坦尼克号人员生还预测importwarningswarnings.filterwarnings("ignore")#忽略警告信息#数据处理清洗包importpandasaspdimportnumpyasnpimportrandomasrnd#可视化包importseabornassnsimportmatp
- 推荐系统如何开发
一行代码通万物
python人工智能推荐系统
推荐系统实现了基于协同过滤的推荐功能支持两种推荐模式:基于用户的协同过滤(寻找相似用户喜欢的物品)基于物品的协同过滤(寻找相似物品)主要功能:数据加载(支持自定义数据或内置的MovieLens数据集)模型训练模型评估(计算RMSE和MAE指标)为指定用户生成推荐列表使用前需要安装依赖库:pipinstallsurprisepandasnumpy可以通过修改sim_options参数来调整相似度计算
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- scala的option和some
矮蛋蛋
编程scala
原文地址:
http://blog.sina.com.cn/s/blog_68af3f090100qkt8.html
对于学习 Scala 的 Java™ 开发人员来说,对象是一个比较自然、简单的入口点。在 本系列 前几期文章中,我介绍了 Scala 中一些面向对象的编程方法,这些方法实际上与 Java 编程的区别不是很大。我还向您展示了 Scala 如何重新应用传统的面向对象概念,找到其缺点
- NullPointerException
Cb123456
androidBaseAdapter
java.lang.NullPointerException: Attempt to invoke virtual method 'int android.view.View.getImportantForAccessibility()' on a null object reference
出现以上异常.然后就在baidu上
- PHP使用文件和目录
天子之骄
php文件和目录读取和写入php验证文件php锁定文件
PHP使用文件和目录
1.使用include()包含文件
(1):使用include()从一个被包含文档返回一个值
(2):在控制结构中使用include()
include_once()函数需要一个包含文件的路径,此外,第一次调用它的情况和include()一样,如果在脚本执行中再次对同一个文件调用,那么这个文件不会再次包含。
在php.ini文件中设置
- SQL SELECT DISTINCT 语句
何必如此
sql
SELECT DISTINCT 语句用于返回唯一不同的值。
SQL SELECT DISTINCT 语句
在表中,一个列可能会包含多个重复值,有时您也许希望仅仅列出不同(distinct)的值。
DISTINCT 关键词用于返回唯一不同的值。
SQL SELECT DISTINCT 语法
SELECT DISTINCT column_name,column_name
F
- java冒泡排序
3213213333332132
java冒泡排序
package com.algorithm;
/**
* @Description 冒泡
* @author FuJianyong
* 2015-1-22上午09:58:39
*/
public class MaoPao {
public static void main(String[] args) {
int[] mao = {17,50,26,18,9,10
- struts2.18 +json,struts2-json-plugin-2.1.8.1.jar配置及问题!
7454103
DAOspringAjaxjsonqq
struts2.18 出来有段时间了! (貌似是 稳定版)
闲时研究下下! 貌似 sruts2 搭配 json 做 ajax 很吃香!
实践了下下! 不当之处请绕过! 呵呵
网上一大堆 struts2+json 不过大多的json 插件 都是 jsonplugin.34.jar
strut
- struts2 数据标签说明
darkranger
jspbeanstrutsservletScheme
数据标签主要用于提供各种数据访问相关的功能,包括显示一个Action里的属性,以及生成国际化输出等功能
数据标签主要包括:
action :该标签用于在JSP页面中直接调用一个Action,通过指定executeResult参数,还可将该Action的处理结果包含到本页面来。
bean :该标签用于创建一个javabean实例。如果指定了id属性,则可以将创建的javabean实例放入Sta
- 链表.简单的链表节点构建
aijuans
编程技巧
/*编程环境WIN-TC*/ #include "stdio.h" #include "conio.h"
#define NODE(name, key_word, help) \ Node name[1]={{NULL, NULL, NULL, key_word, help}}
typedef struct node { &nbs
- tomcat下jndi的三种配置方式
avords
tomcat
jndi(Java Naming and Directory Interface,Java命名和目录接口)是一组在Java应用中访问命名和目录服务的API。命名服务将名称和对象联系起来,使得我们可以用名称
访问对象。目录服务是一种命名服务,在这种服务里,对象不但有名称,还有属性。
tomcat配置
- 关于敏捷的一些想法
houxinyou
敏捷
从网上看到这样一句话:“敏捷开发的最重要目标就是:满足用户多变的需求,说白了就是最大程度的让客户满意。”
感觉表达的不太清楚。
感觉容易被人误解的地方主要在“用户多变的需求”上。
第一种多变,实际上就是没有从根本上了解了用户的需求。用户的需求实际是稳定的,只是比较多,也比较混乱,用户一般只能了解自己的那一小部分,所以没有用户能清楚的表达出整体需求。而由于各种条件的,用户表达自己那一部分时也有
- 富养还是穷养,决定孩子的一生
bijian1013
教育人生
是什么决定孩子未来物质能否丰盛?为什么说寒门很难出贵子,三代才能出贵族?真的是父母必须有钱,才能大概率保证孩子未来富有吗?-----作者:@李雪爱与自由
事实并非由物质决定,而是由心灵决定。一朋友富有而且修养气质很好,兄弟姐妹也都如此。她的童年时代,物质上大家都很贫乏,但妈妈总是保持生活中的美感,时不时给孩子们带回一些美好小玩意,从来不对孩子传递生活艰辛、金钱来之不易、要懂得珍惜
- oracle 日期时间格式转化
征客丶
oracle
oracle 系统时间有 SYSDATE 与 SYSTIMESTAMP;
SYSDATE:不支持毫秒,取的是系统时间;
SYSTIMESTAMP:支持毫秒,日期,时间是给时区转换的,秒和毫秒是取的系统的。
日期转字符窜:
一、不取毫秒:
TO_CHAR(SYSDATE, 'YYYY-MM-DD HH24:MI:SS')
简要说明,
YYYY 年
MM 月
- 【Scala六】分析Spark源代码总结的Scala语法四
bit1129
scala
1. apply语法
FileShuffleBlockManager中定义的类ShuffleFileGroup,定义:
private class ShuffleFileGroup(val shuffleId: Int, val fileId: Int, val files: Array[File]) {
...
def apply(bucketId
- Erlang中有意思的bug
bookjovi
erlang
代码中常有一些很搞笑的bug,如下面的一行代码被调用两次(Erlang beam)
commit f667e4a47b07b07ed035073b94d699ff5fe0ba9b
Author: Jovi Zhang <
[email protected]>
Date: Fri Dec 2 16:19:22 2011 +0100
erts:
- 移位打印10进制数转16进制-2008-08-18
ljy325
java基础
/**
* Description 移位打印10进制的16进制形式
* Creation Date 15-08-2008 9:00
* @author 卢俊宇
* @version 1.0
*
*/
public class PrintHex {
// 备选字符
static final char di
- 读《研磨设计模式》-代码笔记-组合模式
bylijinnan
java设计模式
声明: 本文只为方便我个人查阅和理解,详细的分析以及源代码请移步 原作者的博客http://chjavach.iteye.com/
import java.util.ArrayList;
import java.util.List;
abstract class Component {
public abstract void printStruct(Str
- 利用cmd命令将.class文件打包成jar
chenyu19891124
cmdjar
cmd命令打jar是如下实现:
在运行里输入cmd,利用cmd命令进入到本地的工作盘符。(如我的是D盘下的文件有此路径 D:\workspace\prpall\WEB-INF\classes)
现在是想把D:\workspace\prpall\WEB-INF\classes路径下所有的文件打包成prpall.jar。然后继续如下操作:
cd D: 回车
cd workspace/prpal
- [原创]JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
comsci
eclipse设计模式算法工作swing
JWFD v0.96 工作流系统二次开发包 for Eclipse 简要说明
&nb
- SecureCRT右键粘贴的设置
daizj
secureCRT右键粘贴
一般都习惯鼠标右键自动粘贴的功能,对于SecureCRT6.7.5 ,这个功能也已经是默认配置了。
老版本的SecureCRT其实也有这个功能,只是不是默认设置,很多人不知道罢了。
菜单:
Options->Global Options ...->Terminal
右边有个Mouse的选项块。
Copy on Select
Paste on Right/Middle
- Linux 软链接和硬链接
dongwei_6688
linux
1.Linux链接概念Linux链接分两种,一种被称为硬链接(Hard Link),另一种被称为符号链接(Symbolic Link)。默认情况下,ln命令产生硬链接。
【硬连接】硬连接指通过索引节点来进行连接。在Linux的文件系统中,保存在磁盘分区中的文件不管是什么类型都给它分配一个编号,称为索引节点号(Inode Index)。在Linux中,多个文件名指向同一索引节点是存在的。一般这种连
- DIV底部自适应
dcj3sjt126com
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- Centos6.5使用yum安装mysql——快速上手必备
dcj3sjt126com
mysql
第1步、yum安装mysql
[root@stonex ~]# yum -y install mysql-server
安装结果:
Installed:
mysql-server.x86_64 0:5.1.73-3.el6_5 &nb
- 如何调试JDK源码
frank1234
jdk
相信各位小伙伴们跟我一样,想通过JDK源码来学习Java,比如collections包,java.util.concurrent包。
可惜的是sun提供的jdk并不能查看运行中的局部变量,需要重新编译一下rt.jar。
下面是编译jdk的具体步骤:
1.把C:\java\jdk1.6.0_26\sr
- Maximal Rectangle
hcx2013
max
Given a 2D binary matrix filled with 0's and 1's, find the largest rectangle containing all ones and return its area.
public class Solution {
public int maximalRectangle(char[][] matrix)
- Spring MVC测试框架详解——服务端测试
jinnianshilongnian
spring mvc test
随着RESTful Web Service的流行,测试对外的Service是否满足期望也变的必要的。从Spring 3.2开始Spring了Spring Web测试框架,如果版本低于3.2,请使用spring-test-mvc项目(合并到spring3.2中了)。
Spring MVC测试框架提供了对服务器端和客户端(基于RestTemplate的客户端)提供了支持。
&nbs
- Linux64位操作系统(CentOS6.6)上如何编译hadoop2.4.0
liyong0802
hadoop
一、准备编译软件
1.在官网下载jdk1.7、maven3.2.1、ant1.9.4,解压设置好环境变量就可以用。
环境变量设置如下:
(1)执行vim /etc/profile
(2)在文件尾部加入:
export JAVA_HOME=/home/spark/jdk1.7
export MAVEN_HOME=/ho
- StatusBar 字体白色
pangyulei
status
[[UIApplication sharedApplication] setStatusBarStyle:UIStatusBarStyleLightContent];
/*you'll also need to set UIViewControllerBasedStatusBarAppearance to NO in the plist file if you use this method
- 如何分析Java虚拟机死锁
sesame
javathreadoracle虚拟机jdbc
英文资料:
Thread Dump and Concurrency Locks
Thread dumps are very useful for diagnosing synchronization related problems such as deadlocks on object monitors. Ctrl-\ on Solaris/Linux or Ctrl-B
- 位运算简介及实用技巧(一):基础篇
tw_wangzhengquan
位运算
http://www.matrix67.com/blog/archives/263
去年年底写的关于位运算的日志是这个Blog里少数大受欢迎的文章之一,很多人都希望我能不断完善那篇文章。后来我看到了不少其它的资料,学习到了更多关于位运算的知识,有了重新整理位运算技巧的想法。从今天起我就开始写这一系列位运算讲解文章,与其说是原来那篇文章的follow-up,不如说是一个r
- jsearch的索引文件结构
yangshangchuan
搜索引擎jsearch全文检索信息检索word分词
jsearch是一个高性能的全文检索工具包,基于倒排索引,基于java8,类似于lucene,但更轻量级。
jsearch的索引文件结构定义如下:
1、一个词的索引由=分割的三部分组成: 第一部分是词 第二部分是这个词在多少