算法训练day31贪心算法理论基础Leetcode455分发饼干376摆动序列53最大子序和

贪心算法理论基础

文章链接

代码随想录 (programmercarl.com)

说实话贪心算法并没有固定的套路最好用的策略就是举反例,如果想不到反例,那么就试一试贪心吧

面试中基本不会让面试者现场证明贪心的合理性,代码写出来跑过测试用例即可,或者自己能自圆其说理由就行了

刷题或者面试的时候,手动模拟一下感觉可以局部最优推出整体最优,而且想不到反例,那么就试一试贪心

因为贪心有时候就是常识性的推导,所以会认为本应该就这么做!

贪心算法是一种在每一步选择中都采取在当前状态下最好或最优(即最有利)的选择,从而希望导致结果是全局最好或最优的算法策略。简而言之,贪心算法不从整体最优解考虑,它所做出的选择只在某种意义上是局部最优的。贪心算法试图找到一个全局最优解的快速途径,但没有保证会得到最佳解。

贪心算法的特点:

1. **局部最优选择**:在每一步选择中,它都采取当前状态下的最优解,不会考虑整个问题的全局最优解。
2. **无回溯**:一旦作出这些选择,就不再回溯,即不考虑以前的选择。
3. **实现简单**:相对于其他算法,如动态规划,贪心算法通常更简单,易于实现。
4. **求解速度快**:由于每步都采取局部最优解,不需要考虑其他可能的解,因此在某些问题上可以更快地得到解答。

贪心算法适用于问题满足两个主要条件:贪心选择性质和最优子结构。贪心选择性质意味着通过做出局部最优选择,我们可以得到全局最优解。最优子结构意味着问题的最优解包含其子问题的最优解。

然而,并不是所有问题都可以用贪心算法有效解决。对于那些不能确保通过局部最优解最终达到全局最优解的问题,贪心算法可能不会得到最优解。

应用实例包括:

- **哈夫曼编码**:用于数据压缩的哈夫曼树构建。
- **最小生成树**:如Prim和Kruskal算法。
- **任务调度问题**:例如,有限资源下的任务调度以最小化总完成时间或最大化完成的任务数。
- **找零问题**:在提供最少硬币数目方面,对于特定面额的货币体系,贪心算法能给出最优解。

贪心算法简单且强大,但其应用范围有限,需要仔细分析问题是否适合采用贪心策略。

贪心一般解题步骤

贪心算法一般分为如下四步:

  • 将问题分解为若干个子问题
  • 找出适合的贪心策略
  • 求解每一个子问题的最优解
  • 将局部最优解堆叠成全局最优解

这个四步其实过于理论化了,我们平时在做贪心类的题目 很难去按照这四步去思考,真是有点“鸡肋”。

做题的时候,只要想清楚 局部最优 是什么,如果推导出全局最优,其实就够了

不好意思了,贪心没有套路,说白了就是常识性推导加上举反例

455 分发饼干

题目描述

假设你是一位很棒的家长,想要给你的孩子们一些小饼干。但是,每个孩子最多只能给一块饼干。

对每个孩子 i,都有一个胃口值 g[i],这是能让孩子们满足胃口的饼干的最小尺寸;并且每块饼干 j,都有一个尺寸 s[j] 。如果 s[j] >= g[i],我们可以将这个饼干 j 分配给孩子 i ,这个孩子会得到满足。你的目标是尽可能满足越多数量的孩子,并输出这个最大数值。

示例 1:

输入: g = [1,2,3], s = [1,1]
输出: 1
解释: 
你有三个孩子和两块小饼干,3个孩子的胃口值分别是:1,2,3。
虽然你有两块小饼干,由于他们的尺寸都是1,你只能让胃口值是1的孩子满足。
所以你应该输出1。

示例 2:

输入: g = [1,2], s = [1,2,3]
输出: 2
解释: 
你有两个孩子和三块小饼干,2个孩子的胃口值分别是1,2。
你拥有的饼干数量和尺寸都足以让所有孩子满足。
所以你应该输出2.

提示:

  • 1 <= g.length <= 3 * 104
  • 0 <= s.length <= 3 * 104
  • 1 <= g[i], s[j] <= 231 - 1

题目分析

这里的局部最优就是大饼干喂给胃口大的,充分利用饼干尺寸喂饱一个,全局最优就是喂饱尽可能多的小孩

可以尝试使用贪心策略,先将饼干数组和小孩数组排序。

然后从后向前遍历小孩数组,用大饼干优先满足胃口大的,并统计满足小孩数量。

acm模式代码

#include 
#include 
#include 

class Solution {
public:
    int findContentChildren(std::vector& g, std::vector& s) {
        int result = 0;
        std::sort(g.begin(), g.end());
        std::sort(s.begin(), s.end());
        int index = s.size() - 1; //饼干数组下标
        for (int i = g.size() - 1 ; i >= 0; i--) { //遍历胃口
            while(index >= 0 && s[index] >= g[i]) {// 遍历饼干
                result ++;
                index --;
                break;
            }
        }
        return result;
    }
};

int main() {
    Solution sol;
    std::vector g = {1,2};
    std::vector s = {1,2,3};
    int result = sol.findContentChildren(g, s);
    std::cout << result << std::endl;
    return 0;
}

376 摆动序列

题目描述

如果连续数字之间的差严格地在正数和负数之间交替,则数字序列称为 摆动序列 。第一个差(如果存在的话)可能是正数或负数。仅有一个元素或者含两个不等元素的序列也视作摆动序列。

  • 例如, [1, 7, 4, 9, 2, 5] 是一个 摆动序列 ,因为差值 (6, -3, 5, -7, 3) 是正负交替出现的。

  • 相反,[1, 4, 7, 2, 5] 和 [1, 7, 4, 5, 5] 不是摆动序列,第一个序列是因为它的前两个差值都是正数,第二个序列是因为它的最后一个差值为零。

子序列 可以通过从原始序列中删除一些(也可以不删除)元素来获得,剩下的元素保持其原始顺序。

给你一个整数数组 nums ,返回 nums 中作为 摆动序列 的 最长子序列的长度 。

示例 1:

输入:nums = [1,7,4,9,2,5]
输出:6
解释:整个序列均为摆动序列,各元素之间的差值为 (6, -3, 5, -7, 3) 。

示例 2:

输入:nums = [1,17,5,10,13,15,10,5,16,8]
输出:7
解释:这个序列包含几个长度为 7 摆动序列。
其中一个是 [1, 17, 10, 13, 10, 16, 8] ,各元素之间的差值为 (16, -7, 3, -3, 6, -8) 。

示例 3:

输入:nums = [1,2,3,4,5,6,7,8,9]
输出:2

提示:

  • 1 <= nums.length <= 1000
  • 0 <= nums[i] <= 1000

进阶:你能否用 O(n) 时间复杂度完成此题?

题目分析

局部最优:删除单调坡度上的节点(不包括单调坡度两端的节点),那么这个坡度就可以有两个局部峰值

整体最优:整个序列有最多的局部峰值,从而达到最长摆动序列

实际操作上,其实连删除的操作都不用做,因为题目要求的是最长摆动子序列的长度,所以只需要统计数组的峰值数量就可以了(相当于是删除单一坡度上的节点,然后统计长度)

这就是贪心所贪的地方,让峰值尽可能的保持峰值,然后删除单一坡度上的节点

这是我们思考本题的一个大题思路,但本题要考虑三种情况:

  1. 情况一:上下坡中有平坡
  2. 情况二:数组首尾两端
  3. 情况三:单调坡中有平坡

本题异常情况的本质,就是要考虑平坡, 平坡分两种,一个是 上下中间有平坡,一个是单调有平

acm模式代码

#include 
#include 

class Solution {
public:
    int wiggleMaxLength(std::vector& nums) {
        if (nums.size() <= 1) return nums.size();
        int curDiff = 0;
        int preDiff = 0;
        int result = 1; //记录峰值个数,序列默认序列最右边有一个峰值
        for (int i = 0; i < nums.size() - 1; i++) {
            curDiff = nums[i+1] - nums[i];
            //出现峰值
            if ((preDiff <= 0 && curDiff > 0) || (preDiff >= 0 && curDiff < 0)) {
                result ++;
                preDiff = curDiff; //只在摆动变化的时候更新prediff
            }
        }
        return result;
    }
};

int main () {
    std::vector nums = {1,17,5,10,13,15,10,5,16,8};
    Solution sol;
    int result = sol.wiggleMaxLength(nums);
    std::cout << result << std::endl;
    return 0;
}

53 最大子序列

题目描述

给你一个整数数组 nums ,请你找出一个具有最大和的连续子数组(子数组最少包含一个元素),返回其最大和。

子数组 是数组中的一个连续部分。

示例 1:

输入:nums = [-2,1,-3,4,-1,2,1,-5,4]
输出:6
解释:连续子数组 [4,-1,2,1] 的和最大,为 6 。

示例 2:

输入:nums = [1]
输出:1

示例 3:

输入:nums = [5,4,-1,7,8]
输出:23

提示:

  • 1 <= nums.length <= 105
  • -104 <= nums[i] <= 104

进阶:如果你已经实现复杂度为 O(n) 的解法,尝试使用更为精妙的 分治法 求解。

题目分析

局部最优:当前“连续和”为负数的时候立刻放弃,从下一个元素重新计算“连续和”,因为负数加上下一个元素 “连续和”只会越来越小。

全局最优:选取最大“连续和”

局部最优的情况下,并记录最大的“连续和”,可以推出全局最优

acm模式代码

#include 
#include 

class Solution {
public:
    int maxSubArray(std::vector& nums) {
        int count = 0;
        int result = 0;
        for (int i = 0; i < nums.size(); i++) {
            count += nums[i];
            if (count > result) { // 取区间累计的最大值(相当于不断确定最大子序终止位置)
                result = count;
            }
            if (count < 0) {
                count = 0; // 相当于重置最大子序起始位置,因为遇到负数一定是拉低总和
            }

        }
        return result;
    }
};

int main () {
    std::vector nums = {-2,1,-3,4,-1,2,1,-5,4};
    Solution sol;
    int result = sol.maxSubArray(nums);
    std::cout << result << std::endl;
    return 0;
}

你可能感兴趣的:(贪心算法,算法)