网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题

目录

1. reactor的服务器

1.1 Sock.hpp

1.2 加协议分割报文

1.3 序列化和反序列化

Protocol.hpp

main.cc

Epoll.hpp

TcpServer.hpp

2. 相关笔试题

答案及解析

本篇完。


1. reactor的服务器

Log.hpp和以前一样,因为下面要写ET模式所以Sock.hpp加了一个把sock设置成非阻塞的函数:(要#include

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第1张图片

写到TcpServer.hpp的Accepter函数再改一下Sock.hpp的Accept:(加一个输出错误码的参数)

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第2张图片

1.1 Sock.hpp

#pragma once

#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include 
#include "Log.hpp"
#include 

class Sock
{
private:
    const static int gbacklog = 20; // listen的第二个参数,现在先不管
public:
    Sock()
    {}
    ~Sock()
    {}
    static int Socket()
    {
        int listensock = socket(AF_INET, SOCK_STREAM, 0); // 域 + 类型 + 0 // UDP第二个参数是SOCK_DGRAM
        if (listensock < 0)
        {
            logMessage(FATAL, "create socket error, %d:%s", errno, strerror(errno));
            exit(2);
        }
        int opt = 1;
        setsockopt(listensock, SOL_SOCKET, SO_REUSEADDR | SO_REUSEPORT, &opt, sizeof(opt));
        logMessage(NORMAL, "create socket success, listensock: %d", listensock);
        return listensock;
    }

    static void Bind(int sock, uint16_t port, std::string ip = "0.0.0.0")
    {
        struct sockaddr_in local;
        memset(&local, 0, sizeof local);
        local.sin_family = AF_INET;
        local.sin_port = htons(port);
        inet_pton(AF_INET, ip.c_str(), &local.sin_addr);
        if (bind(sock, (struct sockaddr *)&local, sizeof(local)) < 0)
        {
            logMessage(FATAL, "bind error, %d:%s", errno, strerror(errno));
            exit(3);
        }
    }

    static void Listen(int sock)
    {
        if (listen(sock, gbacklog) < 0)
        {
            logMessage(FATAL, "listen error, %d:%s", errno, strerror(errno));
            exit(4);
        }
        logMessage(NORMAL, "init server success");
    }

    // 一般情况下:
    // const std::string &: 输入型参数
    // std::string *: 输出型参数
    // std::string &: 输入输出型参数
    static int Accept(int listensock, std::string *ip, uint16_t *port, int *accept_errno = nullptr)
    {
        struct sockaddr_in src;
        socklen_t len = sizeof(src);
        *accept_errno = 0;
        int servicesock = accept(listensock, (struct sockaddr *)&src, &len);
        if (servicesock < 0)
        {
            *accept_errno = errno;
            // logMessage(ERROR, "accept error, %d:%s", errno, strerror(errno));
            return -1;
        }
        if (port)
            *port = ntohs(src.sin_port);
        if (ip)
            *ip = inet_ntoa(src.sin_addr);
        return servicesock;
    }

    static bool Connect(int sock, const std::string &server_ip, const uint16_t &server_port)
    {
        struct sockaddr_in server;
        memset(&server, 0, sizeof(server));
        server.sin_family = AF_INET;
        server.sin_port = htons(server_port);
        server.sin_addr.s_addr = inet_addr(server_ip.c_str());

        if (connect(sock, (struct sockaddr *)&server, sizeof(server)) == 0)
            return true;
        else
            return false;
    }

    static bool SetNonBlock(int sock)
    {
        int fl = fcntl(sock, F_GETFL);
        if(fl < 0) 
            return false;
        fcntl(sock, F_SETFL, fl | O_NONBLOCK);
            return true;
    }
};

下面直接放一部分TcpServer.hpp代码跟着注释看:(建议复制到VSCode里看)

#pragma once

#include 
#include 
#include 
#include 
#include "Sock.hpp"
#include "Log.hpp"
#include "Epoll.hpp"

class TcpServer;
class Connection;

using func_t = std::function;
// 为了能够正常工作,常规的sock必须要有独立的接收缓冲区和发送缓冲区(写入)
class Connection // 一个链接类
{
public:
    Connection(int sock = -1) 
        : _sock(sock), _tsvr(nullptr)
    {}
    void SetCallBack(func_t recv_cb, func_t send_cb, func_t except_cb)
    {   // 设置三个回调方法
        _recv_cb = recv_cb;
        _send_cb = send_cb;
        _except_cb = except_cb;
    }
    ~Connection()
    {}
public:
    int _sock; // 负责进行IO的文件描述符
    func_t _recv_cb; // 三个回调方法,是对_sock进行特定读写的对应方法
    func_t _send_cb;
    func_t _except_cb;

    std::string _inbuffer; // 接收缓冲区&&发送缓冲区
    std::string _outbuffer; // 这两string暂时没有办法处理二进制流,文本是可以的

    TcpServer *_tsvr; // 设置对TcpServer的回指指针,对写事件的关心是按需打开
};

class TcpServer
{
    const static int gport = 8080;
    const static int gnum = 128;
public:
    TcpServer(int port = gport)
        : _port(port), _revs_num(gnum)
    {
        // 1. 创建listensock
        _listensock = Sock::Socket();
        Sock::Bind(_listensock, _port);
        Sock::Listen(_listensock);

        // 2. 创建多路转接对象
        _poll.CreateEpoll();

        // 3. 添加listensock到服务器中 -> 三步(类的构造函数也能调用类的成员方法,走到函数体中对象已经存在了)
        // 后三个参数是函数对象,要bind绑定返回一个函数对象->类内函数有this指针,_1是预留的参数
        AddConnection(_listensock, std::bind(&TcpServer::Accepter, this, std::placeholders::_1), nullptr, nullptr);

        // 4. 构建一个获取就绪事件的缓冲区
        _revs = new struct epoll_event[_revs_num];
    }
    void AddConnection(int sock, func_t recv_cb, func_t send_cb, func_t except_cb) // 把任意sock进行添加到TcpServer
    {
        Sock::SetNonBlock(sock); // ET模式要把sock设置成非阻塞 -> 在Sock.hpp中写成函数

        // 除了_listensock,后面还会存在大量的socket,每一个sock都必须被封装成为一个Connection
        // 当服务器中存在大量的Connection时,TcpServer需要将所有Connection进行管理:上面描述了,组织 -> unordered_map
        // 3.1 构建conn对象,封装sock
        Connection *conn = new Connection(sock);
        conn->SetCallBack(recv_cb, send_cb, except_cb);
        conn->_tsvr = this;

        // 3.2 添加sock到epoll中(任务通知)->要知道sock和事件(任何多路转接的服务器,一般只会打开读取事件,写入事件按需打开)
        _poll.AddSockToEpoll(sock, EPOLLIN | EPOLLET);

        // 3.3 将对应的Connection*对象指针添加到Connections映射表中(业务处理)
        _connections.insert(std::make_pair(sock, conn));
    }

    void Accepter(Connection *conn)
    {
        logMessage(DEBUG, "Accepter been called");
    }

    void Dispather() // 根据就绪的事件,进行特定事件的派发
    {
        while (true)
        {
            LoopOnce();
        }
    }
    void LoopOnce()
    {
        int n = _poll.WaitEpoll(_revs, _revs_num);
        for (int i = 0; i < n; i++) // 获取事件
        {
            int sock = _revs[i].data.fd;
            uint32_t revents = _revs[i].events;
            if (revents & EPOLLIN) // 读就绪
            {
                // if(Connection是存在并且_connections[sock]->_recv_cb被设置过)
                if (IsConnectionExists(sock) && _connections[sock]->_recv_cb != nullptr)
                    _connections[sock]->_recv_cb(_connections[sock]); // 调用读事件的回调
            }
            if (revents & EPOLLOUT) // 写就绪
            {
                // if(Connection是存在并且_connections[sock]->_send_cb被设置过)
                if (IsConnectionExists(sock) && _connections[sock]->_send_cb != nullptr)
                    _connections[sock]->_send_cb(_connections[sock]); // 调用写事件的回调
            }
        }
    }
    bool IsConnectionExists(int sock) // 判定Connection是否存在
    {
        auto iter = _connections.find(sock);
        if (iter == _connections.end())
            return false;
        else
            return true;
    }
    ~TcpServer()
    {
        if (_listensock >= 0)
            close(_listensock);
        if (_revs)
            delete[] _revs;
    }
private:
    int _listensock;
    int _port;
    Epoll _poll;
    std::unordered_map _connections; // 管理:sock映射到Connection
    struct epoll_event *_revs; // 就绪事件缓冲区,就绪的文件描述符投递到这里
    int _revs_num; // 就绪事件缓冲区大小
};

编译运行:
网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第3张图片

此时成功调用了Accepter,因为是ET模式,所以是阻塞的,事件没处理也没有连续打印。

写一下Accepter再测试一下:

    void Accepter(Connection *conn)
    {
        // logMessage(DEBUG, "Accepter been called");
        // 一定是listensock已经就绪了,此次读取不会阻塞,
        // 怎么保证,底层只有一个连接就绪呢 -> 循环,直到获取失败
        while (true)
        {
            std::string clientip;
            uint16_t clientport;
            int accept_errno = 0;
            // sock一定是常规的IO sock
            int sock = Sock::Accept(conn->_sock, &clientip, &clientport, &accept_errno);
            if (sock < 0) // 获取失败
            {
                if (accept_errno == EAGAIN || accept_errno == EWOULDBLOCK)
                    break;
                else if (accept_errno == EINTR)  // 概率非常低
                    continue;
                else // accept失败
                {
                    logMessage(WARNING, "accept error, %d : %s", accept_errno, strerror(accept_errno));
                    break;
                }
            }
            else // (sock>=0)获取链接成功->将sock托管给TcpServer
            {
                AddConnection(sock, std::bind(&TcpServer::Recver, this, std::placeholders::_1),
                              std::bind(&TcpServer::Sender, this, std::placeholders::_1),
                              std::bind(&TcpServer::Excepter, this, std::placeholders::_1));
                logMessage(DEBUG, "accept client %s:%d success, add to epoll&&TcpServer success, sock: %d",\
                    clientip.c_str(), clientport, sock);
            }
        }
    }

    void Recver(Connection *conn) // 读取一个正常的sock
    {
        logMessage(DEBUG, "Recver event exists, Recver() been called");
    }

    void Sender(Connection *conn)
    {
    }

    void Excepter(Connection *conn)
    {
    }

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第4张图片

成功获取到读取事件,下面来处理一下:

先写Recver的第一个版本:直接面向字节流,进行常规读取:

    void Recver(Connection *conn) // 读取一个正常的sock
    {
        // logMessage(DEBUG, "Recver event exists, Recver() been called");
        // v1: 直接面向字节流,先进行常规读取
        const int num = 1024;
        while (true)
        {
            char buffer[num];
            ssize_t n = recv(conn->_sock, buffer, sizeof(buffer) - 1, 0);
            if (n < 0)
            {
                if (errno == EAGAIN || errno == EWOULDBLOCK) // 读取完毕了,正常的
                    break;
                else if (errno == EINTR) // 读取被中断了,重新开始读
                    continue;
                else // 真正读取失败 -> 交给异常回调
                {
                    logMessage(ERROR, "recv error, %d : %s", errno, strerror(errno));
                    conn->_except_cb(conn);
                    break;
                }
            }
            else if (n == 0)
            {
                logMessage(DEBUG, "client[%d] quit, server close [%d]", conn->_sock, conn->_sock);
                conn->_except_cb(conn);
                break;
            }
            else // 读取成功
            {
                buffer[n] = 0;
                conn->_inbuffer += buffer; // 读取到的数据全部拼接到接收缓冲区
            }
        }
        logMessage(DEBUG, "conn->_inbuffer[sock: %d]: %s", conn->_sock, conn->_inbuffer.c_str());
    }

测试就是这样的:
网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第5张图片

每个服务端都有自己的接收缓冲区,互不影响(这里回车也被输入进去了只是telnet的原因,这里不写客户端了就这么用了),但还是那句话:怎么保证你读到的是一个完整的报文呢?->就要定制协议了,写一个Protocol.hpp:

1.2 加协议分割报文

在前面加上这行:

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第6张图片

加个类内成员:

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第7张图片

Dispather:

    void Dispather(callback_t cb) // 根据就绪的事件,进行特定事件的派发
    {
        _cb = cb;
        while (true)
        {
            LoopOnce();
        }
    }

main.cc:

#include "TcpServer.hpp"
#include 

void NetCal(Connection *conn, std::string &request)
{
    logMessage(DEBUG, "NetCal been called, get request: %s", request.c_str());
}

int main()
{
    std::unique_ptr svr(new TcpServer());
    svr->Dispather(NetCal);

    return 0;
}

改进的Recver:

    void Recver(Connection *conn) // 读取一个正常的sock
    {
        const int num = 1024;
        bool err = false;
        // logMessage(DEBUG, "Recver event exists, Recver() been called");
        while (true)
        {
            char buffer[num];
            ssize_t n = recv(conn->_sock, buffer, sizeof(buffer) - 1, 0);
            if (n < 0)
            {
                if (errno == EAGAIN || errno == EWOULDBLOCK) // 读取完毕了,正常的
                    break;
                else if (errno == EINTR) // 读取被中断了,重新开始读
                    continue;
                else // 真正读取失败 -> 交给异常回调
                {
                    logMessage(ERROR, "recv error, %d : %s", errno, strerror(errno));
                    conn->_except_cb(conn);
                    err = true;
                    break;
                }
            }
            else if (n == 0)
            {
                logMessage(DEBUG, "client[%d] quit, server close [%d]", conn->_sock, conn->_sock);
                conn->_except_cb(conn);
                err = true;
                break;
            }
            else // 读取成功
            {
                buffer[n] = 0;
                conn->_inbuffer += buffer; // 读取到的数据全部拼接到接收缓冲区
            }
        }
        logMessage(DEBUG, "conn->_inbuffer[sock: %d]: %s", conn->_sock, conn->_inbuffer.c_str());
        if (!err) // 如果错误码还是false就是正常break的
        {
            std::vector messages;
            SpliteMessage(conn->_inbuffer, &messages);
            // 保证走到这里,就是一个完整报文
            for (auto &msg : messages)
            {    // 可以在这里将message封装成为task,然后push到任务队列,任务处理交给后端线程池,这里不处理
                _cb(conn, msg);
            }
        }
    }

一部分Protocol.hpp:(这里用大写X作为切分)

#pragma once

#include 
#include 
#include 
#include 

// 1. 报文和报文之间,我们采用特殊字符来进行解决粘包问题
// 2. 获取一个一个独立完整的报文,序列和反序列化 -- 自定义
// 100+19X100+19X100+19
#define SEP "X"
#define SEP_LEN strlen(SEP)

// 要把传入进来的缓冲区进行切分,要求:
// 1. buffer被切走的,也同时要从buffer中移除
// 2. 可能会存在多个报文,多个报文依次放入out
void SpliteMessage(std::string &buffer, std::vector *out) // 分割报文
{   // buffer: 输入输出型参数,out: 输出型参数
    while (true)
    {
        auto pos = buffer.find(SEP); // 在缓冲区里找分隔符
        if (std::string::npos == pos) // 找不到就break
            break;
        std::string message = buffer.substr(0, pos); // 提取子串:前闭后开区间
        buffer.erase(0, pos + SEP_LEN); // 移除子串和衡娥福
        out->push_back(message); // push_back完整的子串
        // std::cout << "debug: " << message << " : " << buffer << std::endl;
        // sleep(1);
    }
}

编译运行:

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第8张图片

此时就成功把报文分开了。

1.3 序列化和反序列化

把以前自己写的序列化和反序列化复制到Protocol.hpp:

Protocol.hpp

#pragma once

#include 
#include 
#include 
#include 

// 1. 报文和报文之间,我们采用特殊字符来进行解决粘包问题
// 2. 获取一个一个独立完整的报文,序列和反序列化 -- 自定义
// 100+19X100+19X100+19
#define SEP "X"
#define SEP_LEN strlen(SEP)

// 要把传入进来的缓冲区进行切分,要求:
// 1. buffer被切走的,也同时要从buffer中移除
// 2. 可能会存在多个报文,多个报文依次放入out
void SpliteMessage(std::string &buffer, std::vector *out) // 分割报文
{   // buffer: 输入输出型参数,out: 输出型参数
    while (true)
    {
        auto pos = buffer.find(SEP); // 在缓冲区里找分隔符
        if (std::string::npos == pos) // 找不到就break
            break;
        std::string message = buffer.substr(0, pos); // 提取子串:前闭后开区间
        buffer.erase(0, pos + SEP_LEN); // 移除子串和衡娥福
        out->push_back(message); // push_back完整的子串
        // std::cout << "debug: " << message << " : " << buffer << std::endl;
        // sleep(1);
    }
}

// 自己手写序列反序列化
#define SPACE " "
#define SPACE_LEN strlen(SPACE)

std::string Encode(std::string& s)
{
    return s + SEP;
}

class Request
{
public:
    std::string Serialize()
    {
        std::string str;
        str = std::to_string(_x);
        str += SPACE;
        str += _op;
        str += SPACE;
        str += std::to_string(_y);
        return str;
    }
    bool Deserialized(const std::string& str) // 1 + 1
    {
        std::size_t left = str.find(SPACE);
        if (left == std::string::npos)
            return false;
        std::size_t right = str.rfind(SPACE);
        if (right == std::string::npos)
            return false;
        _x = atoi(str.substr(0, left).c_str());
        _y = atoi(str.substr(right + SPACE_LEN).c_str());
        if (left + SPACE_LEN > str.size())
            return false;
        else
            _op = str[left + SPACE_LEN];
        return true;
    }

public:
    Request()
    {}
    Request(int x, int y, char op) 
        : _x(x), _y(y), _op(op)
    {}
    ~Request() 
    {}
public:
    int _x;
    int _y;
    char _op; // '+' '-' '*' '/' '%'
};

class Response
{
public:
    std::string Serialize() // "code_ result_"
    {

        std::string s;
        s = std::to_string(_code);
        s += SPACE;
        s += std::to_string(_result);

        return s;
    }
    bool Deserialized(const std::string& s)
    {
        std::size_t pos = s.find(SPACE);
        if (pos == std::string::npos)
            return false;
        _code = atoi(s.substr(0, pos).c_str());
        _result = atoi(s.substr(pos + SPACE_LEN).c_str());
        return true;
    }
public:
    Response()
    {}
    Response(int result, int code) 
        : _result(result), _code(code)
    {}
    ~Response()
    {}
public:
    int _result; // 计算结果
    int _code;   // 计算结果的状态码
};

main.cc

#include "TcpServer.hpp"
#include 

static Response calculator(const Request &req)
{
    Response resp(0, 0);
    switch (req.op_)
    {
    case '+':
        resp.result_ = req.x_ + req.y_;
        break;
    case '-':
        resp.result_ = req.x_ - req.y_;
        break;
    case '*':
        resp.result_ = req.x_ * req.y_;
        break;
    case '/':
        if (0 == req.y_)
            resp.code_ = 1;
        else
            resp.result_ = req.x_ / req.y_;
        break;
    case '%':
        if (0 == req.y_)
            resp.code_ = 2;
        else
            resp.result_ = req.x_ % req.y_;
        break;
    default:
        resp.code_ = 3;
        break;
    }
    return resp;
}

void NetCal(Connection *conn, std::string &request)
{
    logMessage(DEBUG, "NetCal been called, get request: %s", request.c_str());
    Request req; // 1. 反序列化,1 + 1    2 + 3
    if(!req.Deserialized(request)) 
        return;

    Response resp = calculator(req); // 2. 业务处理

    std::string sendstr = resp.Serialize(); // 3. 序列化,构建应答
    sendstr = Encode(sendstr);

    conn->_outbuffer += sendstr; // 4. 交给服务器conn

    // 5. 想办法,让底层的TcpServer开始发送 -> 需要有完整的发送逻辑
    // 触发发送的动作,一旦开启EPOLLOUT,epoll会自动立马触发一次发送事件就绪,如果后续保持发送的开启,epoll会一直发送
    conn->_tsvr->EnableReadWrite(conn, true, true); // 写完EnableReadWrite才发现回指指针的作用
}

int main()
{
    std::unique_ptr svr(new TcpServer());
    svr->Dispather(NetCal);

    return 0;
}

Sender函数:

   void Sender(Connection *conn)
    {
        while(true)
        {
            ssize_t n = send(conn->_sock, conn->_outbuffer.c_str(), conn->_outbuffer.size(), 0);
            if(n > 0) // 发送成功 -> 移除
            {
                conn->_outbuffer.erase(0, n);
                if(conn->_outbuffer.empty())  // 发完了 -> break
                    break;
            }
            else
            {
                if(errno == EAGAIN || errno == EWOULDBLOCK) // 缓冲区满了 -> break下次再发
                    break;
                else if(errno == EINTR) // 发送被中断 -> 重新发送
                    continue;
                else // 真正读取失败 -> 交给异常回调
                {
                    logMessage(ERROR, "send error, %d : %s", errno, strerror(errno));
                    conn->_except_cb(conn);
                    break;
                }
            }
        }
        // 不确定有没有发完,但是可以保证,如果没有出错,一定是要么发完,要么发送条件不满足,下次再发
        if(conn->_outbuffer.empty())
            EnableReadWrite(conn, true, false);
        else
            EnableReadWrite(conn, true, true);
    }
    void EnableReadWrite(Connection *conn, bool readable, bool writeable) // 控制读写开关
    {
        uint32_t events = ((readable ? EPOLLIN : 0) | (writeable ? EPOLLOUT : 0));
        bool res = _poll.CtrlEpoll(conn->_sock, events);
        assert(res);
    }

Epoll.hpp

加了打开和删除就完整了:

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第9张图片

#pragma once

#include 
#include 

class Epoll
{
    const static int gnum = 128;
    const static int gtimeout = 5000;
public:
    Epoll(int timeout = gtimeout)
        : _timeout(timeout)
    {}
    void CreateEpoll()
    {
        _epfd = epoll_create(gnum);
        if (_epfd < 0)
            exit(5);
    }
    bool DelFromEpoll(int sock) // 移除sock的所有事件
    {
        int n = epoll_ctl(_epfd, EPOLL_CTL_DEL, sock, nullptr);
        return n == 0;
    }
    bool CtrlEpoll(int sock, uint32_t events) // 打开sock的事件
    {
        events |= EPOLLET;
        struct epoll_event ev;
        ev.events = events;
        ev.data.fd = sock;
        int n = epoll_ctl(_epfd, EPOLL_CTL_MOD, sock, &ev);
        return n == 0;
    }
    bool AddSockToEpoll(int sock, uint32_t events)
    {   // 添加sock到epoll中(任务通知)->要知道sock和事件(任何多路转接的服务器,一般只会打开读取事件,写入事件按需打开)
        struct epoll_event ev;
        ev.events = events;
        ev.data.fd = sock;
        int n = epoll_ctl(_epfd, EPOLL_CTL_ADD, sock, &ev);
        return n == 0;
    }
    int WaitEpoll(struct epoll_event revs[], int num)
    {
        return epoll_wait(_epfd, revs, num, _timeout);
    }
    ~Epoll()
    {}

private:
    int _epfd;
    int _timeout;
};

Excepter函数:

    void Excepter(Connection *conn)
    {
        if(!IsConnectionExists(conn->_sock)) // _sock不存在就返回
            return;
        bool res = _poll.DelFromEpoll(conn->_sock); // 1. 从epoll中移除
        assert(res);

        _connections.erase(conn->_sock); // 2. 从unorder_map中移除

        close(conn->_sock); // 3. 关闭sock

        delete conn; // 4. 释放 conn;
        logMessage(DEBUG, "Excepter 回收完毕所有的异常情况");
    }

编译运行:

网络和Linux网络_15(IO多路转接)reactor编程_服务器+相关笔试题_第10张图片

此时代码就结束了,可以自己拓展一下。下面放一下完整的TcpServer.hpp

TcpServer.hpp

#pragma once

#include 
#include 
#include 
#include 
#include 
#include 
#include "Sock.hpp"
#include "Log.hpp"
#include "Epoll.hpp"
#include "Protocol.hpp"

class TcpServer;
class Connection;

using func_t = std::function;
using callback_t = std::function; // 上层业务处理的方法

// 为了能够正常工作,常规的sock必须要有独立的接收缓冲区和发送缓冲区(写入)
class Connection // 一个链接类
{
public:
    Connection(int sock = -1)
        : _sock(sock), _tsvr(nullptr)
    {
    }
    void SetCallBack(func_t recv_cb, func_t send_cb, func_t except_cb)
    { // 设置三个回调方法
        _recv_cb = recv_cb;
        _send_cb = send_cb;
        _except_cb = except_cb;
    }
    ~Connection()
    {
    }

public:
    int _sock;       // 负责进行IO的文件描述符
    func_t _recv_cb; // 三个回调方法,是对_sock进行特定读写的对应方法
    func_t _send_cb;
    func_t _except_cb;

    std::string _inbuffer;  // 接收缓冲区&&发送缓冲区
    std::string _outbuffer; // 这两string暂时没有办法处理二进制流,文本是可以的

    TcpServer *_tsvr; // 设置对TcpServer的回指指针,对写事件的关心是按需打开
};

class TcpServer
{
    const static int gport = 8080;
    const static int gnum = 128;

public:
    TcpServer(int port = gport)
        : _port(port), _revs_num(gnum)
    {
        // 1. 创建listensock
        _listensock = Sock::Socket();
        Sock::Bind(_listensock, _port);
        Sock::Listen(_listensock);

        // 2. 创建多路转接对象
        _poll.CreateEpoll();

        // 3. 添加listensock到服务器中 -> 三步(类的构造函数也能调用类的成员方法,走到函数体中对象已经存在了)
        // 后三个参数是函数对象,要bind绑定返回一个函数对象->类内函数有this指针,_1是预留的参数
        AddConnection(_listensock, std::bind(&TcpServer::Accepter, this, std::placeholders::_1), nullptr, nullptr);

        // 4. 构建一个获取就绪事件的缓冲区
        _revs = new struct epoll_event[_revs_num];
    }
    void AddConnection(int sock, func_t recv_cb, func_t send_cb, func_t except_cb) // 把任意sock进行添加到TcpServer
    {
        Sock::SetNonBlock(sock); // ET模式要把sock设置成非阻塞 -> 在Sock.hpp中写成函数

        // 除了_listensock,后面还会存在大量的socket,每一个sock都必须被封装成为一个Connection
        // 当服务器中存在大量的Connection时,TcpServer需要将所有Connection进行管理:上面描述了,组织 -> unordered_map
        // 3.1 构建conn对象,封装sock
        Connection *conn = new Connection(sock);
        conn->SetCallBack(recv_cb, send_cb, except_cb);
        conn->_tsvr = this;

        // 3.2 添加sock到epoll中(任务通知)->要知道sock和事件(任何多路转接的服务器,一般只会打开读取事件,写入事件按需打开)
        _poll.AddSockToEpoll(sock, EPOLLIN | EPOLLET);

        // 3.3 将对应的Connection*对象指针添加到Connections映射表中(业务处理)
        _connections.insert(std::make_pair(sock, conn));
    }

    void Accepter(Connection *conn)
    {
        // logMessage(DEBUG, "Accepter been called");
        // 一定是listensock已经就绪了,此次读取不会阻塞,
        // 怎么保证,底层只有一个连接就绪呢 -> 循环,直到获取失败
        while (true)
        {
            std::string clientip;
            uint16_t clientport;
            int accept_errno = 0;
            // sock一定是常规的IO sock
            int sock = Sock::Accept(conn->_sock, &clientip, &clientport, &accept_errno);
            if (sock < 0) // 获取失败
            {
                if (accept_errno == EAGAIN || accept_errno == EWOULDBLOCK)
                    break;
                else if (accept_errno == EINTR) // 概率非常低
                    continue;
                else // accept失败
                {
                    logMessage(WARNING, "accept error, %d : %s", accept_errno, strerror(accept_errno));
                    break;
                }
            }
            else // (sock>=0)获取链接成功->将sock托管给TcpServer
            {
                AddConnection(sock, std::bind(&TcpServer::Recver, this, std::placeholders::_1),
                              std::bind(&TcpServer::Sender, this, std::placeholders::_1),
                              std::bind(&TcpServer::Excepter, this, std::placeholders::_1));
                logMessage(DEBUG, "accept client %s:%d success, add to epoll&&TcpServer success, sock: %d",
                           clientip.c_str(), clientport, sock);
            }
        }
    }

    void Recver(Connection *conn) // 读取一个正常的sock
    {
        const int num = 1024;
        bool err = false;
        // logMessage(DEBUG, "Recver event exists, Recver() been called");
        while (true)
        {
            char buffer[num];
            ssize_t n = recv(conn->_sock, buffer, sizeof(buffer) - 1, 0);
            if (n < 0)
            {
                if (errno == EAGAIN || errno == EWOULDBLOCK) // 读取完毕了,正常的
                    break;
                else if (errno == EINTR) // 读取被中断了,重新开始读
                    continue;
                else // 真正读取失败 -> 交给异常回调
                {
                    logMessage(ERROR, "recv error, %d : %s", errno, strerror(errno));
                    conn->_except_cb(conn);
                    err = true;
                    break;
                }
            }
            else if (n == 0)
            {
                logMessage(DEBUG, "client[%d] quit, server close [%d]", conn->_sock, conn->_sock);
                conn->_except_cb(conn);
                err = true;
                break;
            }
            else // 读取成功
            {
                buffer[n] = 0;
                conn->_inbuffer += buffer; // 读取到的数据全部拼接到接收缓冲区
            }
        }
        logMessage(DEBUG, "conn->_inbuffer[sock: %d]: %s", conn->_sock, conn->_inbuffer.c_str());
        if (!err) // 如果错误码还是false就是正常break的
        {
            std::vector messages;
            SpliteMessage(conn->_inbuffer, &messages);
            // 保证走到这里,就是一个完整报文
            for (auto &msg : messages)
            {    // 可以在这里将message封装成为task,然后push到任务队列,任务处理交给后端线程池,这里不处理
                _cb(conn, msg);
            }
        }
    }

   void Sender(Connection *conn)
    {
        while(true)
        {
            ssize_t n = send(conn->_sock, conn->_outbuffer.c_str(), conn->_outbuffer.size(), 0);
            if(n > 0) // 发送成功 -> 移除
            {
                conn->_outbuffer.erase(0, n);
                if(conn->_outbuffer.empty())  // 发完了 -> break
                    break;
            }
            else
            {
                if(errno == EAGAIN || errno == EWOULDBLOCK) // 缓冲区满了 -> break下次再发
                    break;
                else if(errno == EINTR) // 发送被中断 -> 重新发送
                    continue;
                else // 真正读取失败 -> 交给异常回调
                {
                    logMessage(ERROR, "send error, %d : %s", errno, strerror(errno));
                    conn->_except_cb(conn);
                    break;
                }
            }
        }
        // 不确定有没有发完,但是可以保证,如果没有出错,一定是发完了,或者发送条件不满足,下次再发
        if(conn->_outbuffer.empty()) // 发完了->不用关心写
            EnableReadWrite(conn, true, false);
        else // 发送条件不满足,下次再发
            EnableReadWrite(conn, true, true);
    }
    void EnableReadWrite(Connection *conn, bool readable, bool writeable) // 控制读写开关
    {            // 下面的三目:如readable为真就关心读事件,否则为0,writeable就关心写事件
        uint32_t events = ((readable ? EPOLLIN : 0) | (writeable ? EPOLLOUT : 0));
        bool res = _poll.CtrlEpoll(conn->_sock, events);
        assert(res);
    }

    void Excepter(Connection *conn)
    {
        if(!IsConnectionExists(conn->_sock)) // _sock不存在就返回
            return;
        bool res = _poll.DelFromEpoll(conn->_sock); // 1. 从epoll中移除
        assert(res);

        _connections.erase(conn->_sock); // 2. 从unorder_map中移除

        close(conn->_sock); // 3. 关闭sock

        delete conn; // 4. 释放 conn;
        logMessage(DEBUG, "Excepter 回收完毕所有的异常情况");
    }

    void Dispather(callback_t cb) // 根据就绪的事件,进行特定事件的派发
    {
        _cb = cb;
        while (true)
        {
            LoopOnce();
        }
    }
    void LoopOnce()
    {
        int n = _poll.WaitEpoll(_revs, _revs_num);
        for (int i = 0; i < n; i++) // 获取事件
        {
            int sock = _revs[i].data.fd;
            uint32_t revents = _revs[i].events;
            if (revents & EPOLLIN) // 读就绪
            {
                // if(Connection是存在并且_connections[sock]->_recv_cb被设置过)
                if (IsConnectionExists(sock) && _connections[sock]->_recv_cb != nullptr)
                    _connections[sock]->_recv_cb(_connections[sock]); // 调用读事件的回调
            }
            if (revents & EPOLLOUT) // 写就绪
            {
                // if(Connection是存在并且_connections[sock]->_send_cb被设置过)
                if (IsConnectionExists(sock) && _connections[sock]->_send_cb != nullptr)
                    _connections[sock]->_send_cb(_connections[sock]); // 调用写事件的回调
            }
        }
    }
    bool IsConnectionExists(int sock) // 判定Connection是否存在
    {
        auto iter = _connections.find(sock);
        if (iter == _connections.end())
            return false;
        else
            return true;
    }
    ~TcpServer()
    {
        if (_listensock >= 0)
            close(_listensock);
        if (_revs)
            delete[] _revs;
    }

private:
    int _listensock;
    int _port;
    Epoll _poll;
    std::unordered_map _connections; // 管理:sock映射到Connection
    struct epoll_event *_revs;                          // 就绪事件缓冲区,就绪的文件描述符投递到这里
    int _revs_num;                                      // 就绪事件缓冲区大小

    callback_t _cb; // 处理上层的业务的回调函数
};

2. 相关笔试题

1. 以下说法不正确的是()

A.ET事件发生仅通知一次的原因是只被添加到rdlist中一次,而LT可以有多次添加的机会

B.当时用ET模式的时候描述符最好设置为非阻塞模式

C.epoll理论上而言可以高效的监视无限多的文件描述符

D.LT模式也被称之为边沿触发

2. 以下关于事件放入epoll等待队列说法不正确的是()

A.当LT模式下,有新数据到来才会加入到epoll等待队列中

B.有老数据,并且通过epoll_ctl设置EPOLL_CTL_MOD(ET模式)

C.数据可写,并且通过epoll_ctl设置EPOLL_CTL_MOD(ET模式)

D.以上说法中都不正确

3. 以下关于LT模式说法错误的是()

A.通常情况下ET模式效率比LT模式高

B.LT模式下,当epoll_wait检测到fd上有事件发生并将此事件通知应用程序后,应用程序可以不立即处理该事件

C.客户端发送数据,I/O函数会提醒描述符fd有数据---->recv读数据,若一次没有读完,I/O函数会一直提醒服务端fd上有数据,直到recv缓冲区里的数据读完

D.LT模式读取激活事件后,如果还有未处理的数据。事件不会放入EPOLL等待队列

4. 以下关于ET模式说法错误的是()

A.epoll_wait只有在客户端每次发数据时才会返回,除此以外即使接收缓冲区里还有数据也不会触发事件返回

B.在使用ET模式的时候描述符必须设置为阻塞模式

C.使用ET模式的时候最好使用循环读取,将自己需要处理的数据全部处理完毕。

5. 以下关于ET模式和LT模式说法错误的是()

A.ET模式是边缘触发,LT模式是水平触发

B.ET模式是epoll的缺省工作模式

C.ET模式每当状态变化时,触发一个事件

D.LT模式只要满足条件,就触发一个事件,即只要有数据没有被获取,内核就不断通知用户

6. 请简述select的优缺点,分点简述。

7. 请简述poll的优缺点,分点简述。

8. 请简述epoll的优缺点,分点简述。


答案及解析

1. D

答案解析:

        ET模式叫边缘触发:表示描述符状态发生变化时触发一次事件,在没有新的状态变化时不会通知第二次,对于IO读事件来说缓冲区有新的数据到来的时候才会触发一次事件,不管是否处理都只会触发一次,因此尽可能的一次事件处理中循环将自己需要处理的数据处理完,为了避免在循环读取数据中因为没有数据而阻塞,因此最好将描述符设置为非阻塞。

        LT模式叫水平触发:表示描述符状态发生变化,但是没有被处理,就会触发事件,对于IO读写操作来说,只要接收缓冲区中有数据或者发送缓冲区有剩余空间就会触发事件,不断通知用户

D错误:LT是水平触发

2. C

A错误:LT水平触发,对于读是接收缓冲区中有数据可读,也就是有数据就加入等待队列, 对于写是发送缓冲区有剩余空间

B错误:ET边缘触发,有新数据到来的时候才会触发事件,放入EPOLL等待队列

C错误;ET边缘触发,对于写来说是状态从不可写变为可写时才会触发事件,放入等待队列

3. D

A正确:在ET模式下,可以减少epoll的系统调用次数,并且减少每次返回的就绪事件信息,因此能够一定量的提高部分效率。

B正确:LT模式下,若不处理触发的事件,则下次监控依然会触发事件,因此可以不立即处理该事件。

C正确:LT模式下,对于IO读操作来说,就是缓冲区中只要有数据就会一直触发事件,直到缓冲区数据被读完。

D错误:LT模式下,如果还有未处理的数据,事件会再次被触发,并放入EPOLL等待队列。

4. B

        ET模式指的是边缘触发模式,表示只有描述符状态发生改变的时候才会触发一次事件,对于读事件来说指的是只有新数据到来时触发一次,后续不管这次数据是否处理都不会触发第二次事件,直到有下次新数据到来。

        因为边缘触发是只有新数据到来才会触发一次事件,因此使用ET模式的时候最好使用循环读取,将自己需要处理的数据全部处理,避免因为没有新数据到来而导致不触发新事件,使剩下的数据因为无法触发事件而得不到处理

B错误:在边缘模式下,通常是尽量设置为非阻塞操作,而并非阻塞操作

5. B

        ET模式叫边缘触发:表示描述符状态发生变化时触发一次事件,在没有新的状态变化时不会通知第二次,对于IO读事件来说缓冲区有新的数据到来的时候才会触发一次事件,不管是否处理都只会触发一次

        LT模式叫水平触发:表示描述符状态发生变化,但是没有被处理,就会触发事件,对于IO读写操作来说,只要接收缓冲区中有数据或者发送缓冲区有剩余空间就会触发事件,不断通知用户

epoll的缺省工作模式是LT模式,也就是水平触发模式

6. 请简述select的优缺点,分点简述。


select优点:

        select模型是Windows sockets中最常见的IO模型。它利用select函数实现IO 管理。通过对select函数的调用,应用程序可以判断套接字是否存在数据、能否向该套接字写入数据,可以等待多个套接字。


select缺点:

  1. 每次调用select,都需要手动设置fd集合, 从接口使用角度来说也非常不便。
  2. 每次调用select,都需要把fd集合从用户态拷贝到内核态,这个开销在fd很多时会很大。
  3. 同时每次调用select都需要在内核遍历传递进来的所有fd,这个开销在fd很多时也很大。
  4. select支持的文件描述符数量太小。
  5. 编码比较复杂,这是上面的缺点导致的,前面的简易select服务器还没加读和写就挺复杂的了。

7. 请简述poll的优缺点,分点简述。


优点:

  1. 不同与select使用三个位图来表示三个fdset的方式,poll使用一个pollfd的指针实现。
  2. pollfd结构包含了要监视的event和发生的event,不再使用select“参数-值”传递的方式,接口使用比select更方便。
  3. poll并没有最大等待文件描述符数量限制 (但是数量过大后性能也是会下降)。

缺点:

  1. 和select一样,poll返回后,需要轮询struct pollfd数组来获取就绪的描述符。
  2. 每次调用poll都需要把大量的struct pollfd结构从用户层拷贝到内核中。
  3. 同时连接的大量客户端在一时刻可能只有很少的处于就绪状态,因此随着监视的描述符数量的增长, 其效率也会线性下降。
  4. 代码的编写也比较复杂(比select简单)

8. 请简述epoll的优点,分点简述。


epoll缺点:

在编写轻量型的服务器时,和select相比,提升效果不大。


epoll的优点和select的缺点对应:

  1. 接口使用方便:虽然拆分成了三个函数,但是反而使用起来更方便高效,不需要每次循环都设置关注的文件描述符,也做到了输入输出参数分离开。
  2. 数据拷贝轻量:只在合适的时候调用epoll_ctl将文件描述符结构拷贝到内核中,这个操作并不频繁(而select/poll是每次循环都要进行拷贝)。
  3. 事件回调机制:避免使用遍历检测,而是使用回调函数的方式,将就绪的文件描述符结构加入到就绪队列中。epoll_wait返回直接访问就绪队列就知道哪些文件描述符就绪,这个操作时间复杂度是O(1),即使文件描述符数目很多, 效率也不会受到影响。
  4. 没有数量限制:文件描述符数目无上限。
  5. 编码相对简单,虽然epoll的机制更复杂,但是它用起来更方便也更高效。

本篇完。

        此篇应该是此专栏的最后一篇了,多路转接的代码都建议自己敲一敲,复习复习自己做两个项目就能投简历找工作了,后面也会更新算法和数据库的内容。

你可能感兴趣的:(⑦网络和Linux网络编程,linux,服务器,reactor,c++,网络,信息与通信,面试)