- BGE-M3模型结合Milvus向量数据库强强联合实现混合检索
在基于生成式人工智能的应用开发中,通过关键词或语义匹配的方式对用户提问意图进行识别是一个很重要的步骤,因为识别的精准与否会影响后续大语言模型能否检索出合适的内容作为推理的上下文信息(或选择合适的工具)以给出用户最符合预期的回答。在本篇文章中,我将尽可能详细地介绍想达成准确识别用户提问意图的解决方案之一,即基于功能强大的BGE-M3模型和Milvus向量数据库实现混合检索(稠密向量densevect
- Milvus 实战全流程
学习路径总览1.Milvus基础知识什么是向量数据库?Milvus的核心概念(collection、field、index、partition、segment)Milvus和Faiss、Annoy、HNSW的区别2.安装与部署Docker快速部署Milvus(推荐)本地开发环境安装使用MilvusLite本地测试3.数据建模与管理创建Collection与Schema定义(包含向量字段和元数据字段
- 手把手教你搭建AI搜图系统:基于BGE-VL+Milvus的完整实现指南
引言图像搜索有何价值?•帮你找身份证:在海量相册里搜索身份证•电商神器:淘宝"拍立淘"让你拍照变订单•设计师救星:3秒找到可商用的高清素材图老搜索vs新搜索的区别老搜索:像查字典,必须输入正确关键词新搜索:像跟人聊天,图片/语音都能搜,还能理解表情包为什么选BGE-VL+Milvus这个王炸组合?•就像给搜索引擎装了"人脑"(BGE-VL理解图片内涵)•加上"闪电手"Milvus(毫秒级匹配海量图
- 基于Milvus和BGE-VL模型实现以图搜图
时间的痕迹01
milvus
背景最近再做项目的时候,里面有个AI检索的功能,其中一个点就是要实现以图搜图,也就是用户上传一张图,要找出相似度比较高的图,比如下面这样,第一张是原图,第二张是图中的一部分,用户上传第二张图,要能检索到第一张完整的图实现思路整个实现的核心就是用向量检索,也就是在运营端上传第一张图片的时候,先把整个图片转换为向量,存储到向量数据库中,然后用户在检索的时候,把第二张图再转换为向量,与第一张图的向量进行
- 玩转 Milvus(一):解锁向量数据库的秘密,拥抱Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
引言:向量数据库,AI时代的“超级引擎”想象一下,你上传一张猫咪照片,系统瞬间从百万张图片中挑出最相似的几张;或者在购物APP中点开一件T恤,推荐栏立刻展示你心动的搭配。这些智能体验的背后,藏着一个秘密武器——高维向量。通过深度学习模型,文本、图像、音频被转化为一串数字,捕捉它们的“灵魂”。但如何在海量向量中快速找到“最像”的那一个?传统数据库如MySQL或MongoDB束手无策,而向量数据库横空
- 玩转 Milvus(二):在 Ubuntu 22.04(WSL2)上安装 Milvus
不学无术の码农
玩转Milvus:向量搜索与AI实践milvus向量数据库
玩转Milvus(二):在Ubuntu22.04(WSL2)上安装Milvus引言:让Milvus在你的笔记本上“起飞”在《玩转Milvus(一)》中,我们揭开了向量数据库的神秘面纱,认识了Milvus作为AI时代的“超级引擎”,如何驱动智能搜索、推荐系统和多模态应用。现在,是时候让Milvus在你的电脑上“落地生根”了!本篇博客将带你在Ubuntu22.04(WSL2)环境下安装Milvus,聚
- RAG面试内容整理-3. 向量检索原理与常用库(ANN、FAISS、Milvus 等)
不务正业的猿
面试LangChainAI面试职场和发展大模型RAGAI人工智能算法
向量检索利用向量空间的相似度来查找相关内容,是近年来兴起的检索技术核心。其基础是在语义嵌入(embedding)模型的支持下,将文本、图像等数据表示为高维向量,以便通过向量相似度(如余弦相似度或欧氏距离)找到内容上的邻近项。由于直接精确计算所有向量之间的距离在大规模下计算开销巨大,实际系统通常采用近似最近邻搜索(ApproximateNearestNeighbor,ANN)算法,在保证结果精度接近
- 图片查重从设计到实现(2)Milvus安装准备etcd介绍、应用场景及Docker安装配置
超龄超能程序猿
milvusetcddocker
etcd作用、应用场景及Docker安装配置在分布式向量数据库Milvus的架构中,etcd扮演着至关重要的角色。Milvus用于存储和管理海量向量数据,支持高效的相似性搜索等操作,而其分布式集群的正常运行高度依赖元数据的一致性和可靠性,etcd正是承担这一关键任务的组件,负责存储Milvus集群的元数据,如集合信息、索引配置、分区详情等,确保Milvus各节点能协同工作。下面详细介绍etcd的相
- Milvus 2.5.14 使用 milvus-backup v0.5.7 的备份实践
gs80140
基础知识科谱milvus
目录Milvus2.5.14使用milvus-backupv0.5.7的备份实践背景部署环境1.安装milvus-backup工具2.确认Milvus服务信息3.编写backup.yaml配置4.执行备份5.遇到的问题及解决方案(1)invalidkey:log.file.rootpath(2)invalidkey:milvus.port或milvus.address(3)备份只有meta文件(4
- Milvus向量数据库集合操作初尝试
麦克阿建
milvus
目录1.集合(Collection)2.字段(Field)3.索引(Index)4.分区(Partition)5.实体(Entity)6.代码示例6.1集合创建6.2向量插入6.3向量查询6.4向量删除1.集合(Collection)集合是Milvus中存储数据的最基本单元。它类似于数据库中的一个表(table)。集合定义了数据的整体结构,包括数据类型、字段、索引等。作用:集合是你数据的容器,用来
- 高阶知识库搭建实战五、(向量数据库Milvus安装)
伯牙碎琴
大模型数据库milvus大模型AI
以下是关于在Windows环境下直接搭建Milvus向量数据库的教程:本教程分两部分,第一部分是基于docker安装,在Windows环境下直接安装Milvus向量数据库,目前官方推荐的方式是通过Docker进行部署,因为Milvus的运行环境依赖于Linux系统。如果你希望在Windows上直接运行Milvus,可以考虑使用MilvusLite版本,这是一个轻量级的Python库,适用于快速原型
- 向量数据库FAISS/Chromadb/ES/milvus简单概述
FAISSFAISS(FacebookAISimilaritySearch)是一种高性能的向量相似性搜索库,用于在大规模向量数据集中快速搜索最相似的向量。它是由FacebookAIResearch开发的,旨在解决大规模向量搜索的问题,广泛应用于各种领域,如图像搜索、文本搜索、推荐系统等。FAISS的主要特点和优势如下:高效的相似性搜索:FAISS使用了一系列高效的算法和数据结构,如倒排索引、局部敏
- 大模型——TRAE+Milvus MCP 自然语言就能搞定向量数据库
不二人生
大模型milvus数据库trae大模型
大模型——TRAE+MilvusMCP自然语言就能搞定向量数据库不久前,继Cursor和ClaudeDesktop在海外市场掀起智能编程浪潮后,字节跳动TRAE海外版也进入了付费模式。相较前两款海外产品,TRAE集成了代码补全、智能问答和Agent模式之外,还可以为中文开发者带来本土化的智能编程体验。恰逢其时,MilvusMCP服务器新增了SSE(Server-SentEvents)支持。相比传统
- 推荐开源项目:Milvus Lite —— 轻量级向量数据库,助力AI应用快速起飞
穆希静
推荐开源项目:MilvusLite——轻量级向量数据库,助力AI应用快速起飞项目介绍MilvusLite是知名开源向量数据库Milvus的轻量级版本,专为需要在小型环境中进行向量嵌入和相似性搜索的AI应用设计。通过将MilvusLite导入您的Python应用,您可以直接使用Milvus的核心向量搜索功能。MilvusLite已集成在PythonSDKofMilvus中,只需通过pipinstal
- Linux部署Milvus数据库及Attu UI工具完全指南
一、准备工作1.1环境要求操作系统:Ubuntu20.04/Debian11/CentOS7+硬件配置:至少8GB内存,4核CPU,50GB磁盘空间网络要求:可访问互联网(用于拉取Docker镜像)1.2安装Docker和DockerCompose1.2.1安装Dockersudoapt-getupdatesudoapt-getinstall-ydocker.iosudosystemctlstar
- windows配置内网穿透
AI算法网奇
win/ubuntu运维服务器
目录dify访问:在Windows上配置frpcdify访问:VECTOR_STORE=milvusMILVUS_URL=http://host.docker.internal:19530#取决于Milvus启动位置在Windows上配置frpc下载地址:https://github.com/fatedier/frp/releases解压后,编辑frpc.ini:下载版本:frp_0.62.1_w
- 医疗AI与融合数据库的整合:挑战、架构与未来展望(下)
Allen_Lyb
数智化教程(第二期)人工智能数据库架构
解决方案:引入融合数据库(Multi-modalDataFusionDB)医院引入一款支持图、向量、表、流的融合数据库(如OracleADW、Milvus+PostgreSQL、或某国产平台),完成了以下集成:数据类型来源系统格式/模型示例内容基因组数据NGS平台VCF/JSON/图EGFR突变、ALK融合等医学影像特征CT影像AI平台向量肿瘤体积、位置、边界清晰度等临床病历HIS/EMR结构化表
- 国产(以麒麟为例)环境,离线安装docker、docker-compose、milvus
般若-波罗蜜
1024程序员节dockerpython深度学习pytorch
文章目录一、专有名词解释1.主流cpu2.操作系统二、安装docker2.读入数据总结docker错误解决方法一、专有名词解释1.主流cpu架构(指令集)x86(早期intel开发的32位指令集)x64(CISC)1)AMD64--------AMD首先开发出64位指令集,向下兼容32位2)x86_64--------intel使用AMD的64位指令集,换了个名字而已ARMAArch64为ARMv
- Neo4j 的向量搜索(Neo4jVector)和常见的向量数据库(比如 Milvus、Qdrant)之间的区别与联系
先说联系(共同点)点内容✅都支持向量检索都可以基于embedding(向量)做相似度搜索,比如给一段文本、找出最相似的若干条记录。✅都用于语义检索你可以把它们用在RAG(检索增强生成)、ChatwithDocs、智能问答、推荐系统等应用里。✅都支持批量插入、查询都可以批量向数据库中插入文本+向量,然后用向量做top-k检索(如search(k=8))。✅都和LangChain集成它们都可以通过la
- RAG技术栈详解:构建智能问答系统的核心组件
认知超载
AI人工智能
本文深度剖析RAG(Retrieval-AugmentedGeneration)技术栈的核心构成,助你快速搭建企业级知识增强系统一、RAG技术架构全景图二、核心组件技术选型1.检索模块(Retriever)向量数据库主流选择:Pinecone、Milvus、Qdrant、Weaviate新兴势力:ChromaDB(开源轻量级)、腾讯云向量数据库嵌入模型(Embedding)OpenAItext-e
- 安装milvus数据库
weixin_44080967
milvus数据库
#创建保存目录mkdir-pdocker_images_backupcddocker_images_backup#1.保存Milvus镜像dockersave-omilvus_latest.tarmilvusdb/milvus:latest#2.保存MinIO镜像dockersave-ominio_latest.tarminio/minio:latest#3.保存ETCD镜像dockersave-
- Milvus向量数据库入门指南
longfei.li
milvus数据库人工智能
一、Milvus简介Milvus是一个开源的向量数据库,专为AI应用和向量相似度搜索而设计,以加速非结构化数据的检索。自2019年创建以来,Milvus专注于存储、索引和管理由深度神经网络和其他机器学习模型生成的海量嵌入向量。其能够处理万亿级别的向量索引任务。Milvus的核心优势在于其高效的索引机制,它支持多种索引类型,包括FLAT、IVF_FLAT、IVF_SQ8、IVF_PQ和HNSW等。这
- 新手如何本地构建Milvus向量数据库
BeMiracle~
milvus数据库
简单构建一个Milvus数据库一、前言:什么是Milvus数据库二、安装Docker官方下载地址:配置Docker三、安装Milvus四、Milvus关键概念介绍1、首先创建数据库2、然后创建逻辑定义3、添加字段4、创建集合collection5、建立索引(有索引才能查询数据)6、插入更新删除数据7、查询数据(查询limit个相似向量)一、前言:什么是Milvus数据库Milvus是一款开源向量
- Milvus数据库创建
cts618
Milvus分布式向量数据库数据库milvusoracle
URL:https://milvus.io/docs/zh/manage_databases.mdfrompymilvusimportMilvusClient"""URL:https://milvus.io/docs/zh/manage_databases.md"""#创建数据库client=MilvusClient(uri="",token="")client.create_database(d
- Milvus知识库创建
importconfigparserimporttimeimportrandomfrompymilvusimportMilvusClientfrompymilvusimportDataTypecfp=configparser.RawConfigParser()cfp.read('config.ini')milvus_uri=cfp.get('example','uri')token=cfp.get
- Milvus中 Collections 级多租户 和 分区级多租户 的区别
背太阳的牧羊人
人工智能RAG优化方法milvus向量数据库
原文链接图片内容中。1,所有租户共用一个Collection:所有租户共享一个Collection,租户特定字段用于过滤。2,每个租户一个分区:租户共享一个Collections,但他们的数据存储在不同的分区中。我们可以通过为每个租户分配一个专用分区来隔离数据。3,基于PartitionKey的多租户:这是一种可扩展性更强的方案,其中单个Collections使用分区Key来区分租户。它们看起来相
- Milvus 资源调度系统的核心部分:「查询节点」「资源组」「数据库」
背太阳的牧羊人
milvus数据库milvus数据库
Milvus的资源管理分为三层:查询节点、资源组和数据库。查询节点:处理查询任务的组件。它在物理机或容器(如Kubernetes中的pod)上运行。资源组:查询节点的集合,充当逻辑组件(数据库和Collections)与物理资源之间的桥梁。您可以将一个或多个数据库或集合分配给一个资源组。下面我将详细解释这三个概念。总体图(打个比方)你可以把整个Milvus系统想象成一个「大型图书馆系统」,里头有:
- 向量数据库milvus中文全文检索取不到数据的处理办法
--勇
数据库milvus全文检索
检查中文分词配置Milvus2.5+支持原生中文全文检索,但需显式配置中文分词器:创建集合时指定分词器类型为chinesepythonschema.add_field(field_name="text",datatype=DataType.VARCHAR,max_length=65535,enable_analyzer=True,analyzer_params={"type":"chinese"}
- pymilvus.exceptions.MilvusException: <MilvusException: (code=0, message=attempt #0: channel=by-dev-r
Langchain连接AI大模型连接milvus数据库,向milvus同步数据时报错如下:ERROR:ExceptioninASGIapplicationTraceback(mostrecentcalllast):File"/home/devops/.local/lib/python3.10/site-packages/uvicorn/protocols/http/httptools_impl.p
- Milvus向量数据库:处理和分析大规模向量数据
concisedistinct
人工智能milvus数据库向量人工智能机器学习高可用容灾
目录一Milvus概述性能可扩展性易用性二Milvus的核心技术1向量索引HNSWIVFPQ2GPU加速3分布式架构分布式三深入了解Milvus的技术细节1存储机制持久化存储内存存储2数据导入与导出批量导入实时导入3高可用性与容灾机制数据副本自动故障恢复数据备份与恢复四实践中的Milvus1电商平台的图像搜索系统架构性能优化2金融行业的风险控制系统架构成果与展望五结语在当今数据驱动的世界中,处理和
- 继之前的线程循环加到窗口中运行
3213213333332132
javathreadJFrameJPanel
之前写了有关java线程的循环执行和结束,因为想制作成exe文件,想把执行的效果加到窗口上,所以就结合了JFrame和JPanel写了这个程序,这里直接贴出代码,在窗口上运行的效果下面有附图。
package thread;
import java.awt.Graphics;
import java.text.SimpleDateFormat;
import java.util
- linux 常用命令
BlueSkator
linux命令
1.grep
相信这个命令可以说是大家最常用的命令之一了。尤其是查询生产环境的日志,这个命令绝对是必不可少的。
但之前总是习惯于使用 (grep -n 关键字 文件名 )查出关键字以及该关键字所在的行数,然后再用 (sed -n '100,200p' 文件名),去查出该关键字之后的日志内容。
但其实还有更简便的办法,就是用(grep -B n、-A n、-C n 关键
- php heredoc原文档和nowdoc语法
dcj3sjt126com
PHPheredocnowdoc
<!doctype html>
<html lang="en">
<head>
<meta charset="utf-8">
<title>Current To-Do List</title>
</head>
<body>
<?
- overflow的属性
周华华
JavaScript
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN" "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml&q
- 《我所了解的Java》——总体目录
g21121
java
准备用一年左右时间写一个系列的文章《我所了解的Java》,目录及内容会不断完善及调整。
在编写相关内容时难免出现笔误、代码无法执行、名词理解错误等,请大家及时指出,我会第一时间更正。
&n
- [简单]docx4j常用方法小结
53873039oycg
docx
本代码基于docx4j-3.2.0,在office word 2007上测试通过。代码如下:
import java.io.File;
import java.io.FileInputStream;
import ja
- Spring配置学习
云端月影
spring配置
首先来看一个标准的Spring配置文件 applicationContext.xml
<?xml version="1.0" encoding="UTF-8"?>
<beans xmlns="http://www.springframework.org/schema/beans"
xmlns:xsi=&q
- Java新手入门的30个基本概念三
aijuans
java新手java 入门
17.Java中的每一个类都是从Object类扩展而来的。 18.object类中的equal和toString方法。 equal用于测试一个对象是否同另一个对象相等。 toString返回一个代表该对象的字符串,几乎每一个类都会重载该方法,以便返回当前状态的正确表示.(toString 方法是一个很重要的方法) 19.通用编程:任何类类型的所有值都可以同object类性的变量来代替。
- 《2008 IBM Rational 软件开发高峰论坛会议》小记
antonyup_2006
软件测试敏捷开发项目管理IBM活动
我一直想写些总结,用于交流和备忘,然都没提笔,今以一篇参加活动的感受小记开个头,呵呵!
其实参加《2008 IBM Rational 软件开发高峰论坛会议》是9月4号,那天刚好调休.但接着项目颇为忙,所以今天在中秋佳节的假期里整理了下.
参加这次活动是一个朋友给的一个邀请书,才知道有这样的一个活动,虽然现在项目暂时没用到IBM的解决方案,但觉的参与这样一个活动可以拓宽下视野和相关知识.
- PL/SQL的过程编程,异常,声明变量,PL/SQL块
百合不是茶
PL/SQL的过程编程异常PL/SQL块声明变量
PL/SQL;
过程;
符号;
变量;
PL/SQL块;
输出;
异常;
PL/SQL 是过程语言(Procedural Language)与结构化查询语言(SQL)结合而成的编程语言PL/SQL 是对 SQL 的扩展,sql的执行时每次都要写操作
- Mockito(三)--完整功能介绍
bijian1013
持续集成mockito单元测试
mockito官网:http://code.google.com/p/mockito/,打开documentation可以看到官方最新的文档资料。
一.使用mockito验证行为
//首先要import Mockito
import static org.mockito.Mockito.*;
//mo
- 精通Oracle10编程SQL(8)使用复合数据类型
bijian1013
oracle数据库plsql
/*
*使用复合数据类型
*/
--PL/SQL记录
--定义PL/SQL记录
--自定义PL/SQL记录
DECLARE
TYPE emp_record_type IS RECORD(
name emp.ename%TYPE,
salary emp.sal%TYPE,
dno emp.deptno%TYPE
);
emp_
- 【Linux常用命令一】grep命令
bit1129
Linux常用命令
grep命令格式
grep [option] pattern [file-list]
grep命令用于在指定的文件(一个或者多个,file-list)中查找包含模式串(pattern)的行,[option]用于控制grep命令的查找方式。
pattern可以是普通字符串,也可以是正则表达式,当查找的字符串包含正则表达式字符或者特
- mybatis3入门学习笔记
白糖_
sqlibatisqqjdbc配置管理
MyBatis 的前身就是iBatis,是一个数据持久层(ORM)框架。 MyBatis 是支持普通 SQL 查询,存储过程和高级映射的优秀持久层框架。MyBatis对JDBC进行了一次很浅的封装。
以前也学过iBatis,因为MyBatis是iBatis的升级版本,最初以为改动应该不大,实际结果是MyBatis对配置文件进行了一些大的改动,使整个框架更加方便人性化。
- Linux 命令神器:lsof 入门
ronin47
lsof
lsof是系统管理/安全的尤伯工具。我大多数时候用它来从系统获得与网络连接相关的信息,但那只是这个强大而又鲜为人知的应用的第一步。将这个工具称之为lsof真实名副其实,因为它是指“列出打开文件(lists openfiles)”。而有一点要切记,在Unix中一切(包括网络套接口)都是文件。
有趣的是,lsof也是有着最多
- java实现两个大数相加,可能存在溢出。
bylijinnan
java实现
import java.math.BigInteger;
import java.util.regex.Matcher;
import java.util.regex.Pattern;
public class BigIntegerAddition {
/**
* 题目:java实现两个大数相加,可能存在溢出。
* 如123456789 + 987654321
- Kettle学习资料分享,附大神用Kettle的一套流程完成对整个数据库迁移方法
Kai_Ge
Kettle
Kettle学习资料分享
Kettle 3.2 使用说明书
目录
概述..........................................................................................................................................7
1.Kettle 资源库管
- [货币与金融]钢之炼金术士
comsci
金融
自古以来,都有一些人在从事炼金术的工作.........但是很少有成功的
那么随着人类在理论物理和工程物理上面取得的一些突破性进展......
炼金术这个古老
- Toast原来也可以多样化
dai_lm
androidtoast
Style 1: 默认
Toast def = Toast.makeText(this, "default", Toast.LENGTH_SHORT);
def.show();
Style 2: 顶部显示
Toast top = Toast.makeText(this, "top", Toast.LENGTH_SHORT);
t
- java数据计算的几种解决方法3
datamachine
javahadoopibatisr-languer
4、iBatis
简单敏捷因此强大的数据计算层。和Hibernate不同,它鼓励写SQL,所以学习成本最低。同时它用最小的代价实现了计算脚本和JAVA代码的解耦,只用20%的代价就实现了hibernate 80%的功能,没实现的20%是计算脚本和数据库的解耦。
复杂计算环境是它的弱项,比如:分布式计算、复杂计算、非数据
- 向网页中插入透明Flash的方法和技巧
dcj3sjt126com
htmlWebFlash
将
Flash 作品插入网页的时候,我们有时候会需要将它设为透明,有时候我们需要在Flash的背面插入一些漂亮的图片,搭配出漂亮的效果……下面我们介绍一些将Flash插入网页中的一些透明的设置技巧。
一、Swf透明、无坐标控制 首先教大家最简单的插入Flash的代码,透明,无坐标控制: 注意wmode="transparent"是控制Flash是否透明
- ios UICollectionView的使用
dcj3sjt126com
UICollectionView的使用有两种方法,一种是继承UICollectionViewController,这个Controller会自带一个UICollectionView;另外一种是作为一个视图放在普通的UIViewController里面。
个人更喜欢第二种。下面采用第二种方式简单介绍一下UICollectionView的使用。
1.UIViewController实现委托,代码如
- Eos平台java公共逻辑
蕃薯耀
Eos平台java公共逻辑Eos平台java公共逻辑
Eos平台java公共逻辑
>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>>
蕃薯耀 2015年6月1日 17:20:4
- SpringMVC4零配置--Web上下文配置【MvcConfig】
hanqunfeng
springmvc4
与SpringSecurity的配置类似,spring同样为我们提供了一个实现类WebMvcConfigurationSupport和一个注解@EnableWebMvc以帮助我们减少bean的声明。
applicationContext-MvcConfig.xml
<!-- 启用注解,并定义组件查找规则 ,mvc层只负责扫描@Controller -->
<
- 解决ie和其他浏览器poi下载excel文件名乱码
jackyrong
Excel
使用poi,做传统的excel导出,然后想在浏览器中,让用户选择另存为,保存用户下载的xls文件,这个时候,可能的是在ie下出现乱码(ie,9,10,11),但在firefox,chrome下没乱码,
因此必须综合判断,编写一个工具类:
/**
*
* @Title: pro
- 挥洒泪水的青春
lampcy
编程生活程序员
2015年2月28日,我辞职了,离开了相处一年的触控,转过身--挥洒掉泪水,毅然来到了兄弟连,背负着许多的不解、质疑——”你一个零基础、脑子又不聪明的人,还敢跨行业,选择Unity3D?“,”真是不自量力••••••“,”真是初生牛犊不怕虎•••••“,••••••我只是淡淡一笑,拎着行李----坐上了通向挥洒泪水的青春之地——兄弟连!
这就是我青春的分割线,不后悔,只会去用泪水浇灌——已经来到
- 稳增长之中国股市两点意见-----严控做空,建立涨跌停版停牌重组机制
nannan408
对于股市,我们国家的监管还是有点拼的,但始终拼不过飞流直下的恐慌,为什么呢?
笔者首先支持股市的监管。对于股市越管越荡的现象,笔者认为首先是做空力量超过了股市自身的升力,并且对于跌停停牌重组的快速反应还没建立好,上市公司对于股价下跌没有很好的利好支撑。
我们来看美国和香港是怎么应对股灾的。美国是靠禁止重要股票做空,在
- 动态设置iframe高度(iframe高度自适应)
Rainbow702
JavaScriptiframecontentDocument高度自适应局部刷新
如果需要对画面中的部分区域作局部刷新,大家可能都会想到使用ajax。
但有些情况下,须使用在页面中嵌入一个iframe来作局部刷新。
对于使用iframe的情况,发现有一个问题,就是iframe中的页面的高度可能会很高,但是外面页面并不会被iframe内部页面给撑开,如下面的结构:
<div id="content">
<div id=&quo
- 用Rapael做图表
tntxia
rap
function drawReport(paper,attr,data){
var width = attr.width;
var height = attr.height;
var max = 0;
&nbs
- HTML5 bootstrap2网页兼容(支持IE10以下)
xiaoluode
html5bootstrap
<!DOCTYPE html>
<html>
<head lang="zh-CN">
<meta charset="UTF-8">
<meta http-equiv="X-UA-Compatible" content="IE=edge">